2,170 research outputs found

    A technique for making clean holes in metallic piping and components

    Get PDF
    Testing was conducted to develop a technique of providing clean holes in process piping or in a metal surface accessible from one side only without disassembling the system. The method was performed on sample pieces of piping and worked successfully with no contaminants being found on the inside of the pipe. The materials tested were Inconel 600, 304 stainless steel, Hastelloy X, and ASTM-A53 black steel. The technique was developed such that it could be done in the field with hand-held power tools and a portable tungsten inert gas welding machine

    Performance and evaluation of two liquid-metal pumps for sodium-potassium service

    Get PDF
    Performance tests on liquid metal pumps for sodium potassium loop

    Atomistic studies of transformation pathways and energetics in plutonium

    Full text link
    One of the most challenging problems in understanding the structural phase transformations in Pu is to determine the energetically favored, continuous atomic pathways from one crystal symmetry to another. This problem involves enumerating candidate pathways and studying their energetics to garner insight into instabilities and energy barriers. The purpose of this work is to investigate the energetics of two transformation pathways for the delta to alpha' transformation in Pu that were recently proposed [Lookman et al., Phys. Rev. Lett. 100:145504, 2008] on the basis of symmetry. These pathways require the presence of either an intermediate hexagonal closed-packed (hcp) structure or a simple hexagonal (sh) structure. A subgroup of the parent fcc and the intermediate hexagonal structure, which has trigonal symmetry, facilitates the transformation to the intermediate hcp or sh structure. Phonons then break the translational symmetry from the intermediate hcp or sh structure to the final monoclinic symmetry of the alpha' structure. We perform simulations using the modified embedded atom method (MEAM) for Pu to investigate these candidate pathways. Our main conclusion is that the path via hcp is energetically favored and the volume change for both pathways essentially occurs in the second step of the transformation, i.e. from the intermediate sh or hcp to the monoclinic structure. Our work also highlights the deficiency of the current state-of-the-art MEAM potential in capturing the anisotropy associated with the lower symmetry monoclinic structure.Comment: 12 pages, 5 figures, accepted for publication in Philos. Ma

    Repulsively bound atom pairs in an optical lattice

    Full text link
    Throughout physics, stable composite objects are usually formed via attractive forces, which allow the constituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in a structured environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even for repulsive interactions. Here we report on the first observation of such an exotic bound state, comprised of a pair of ultracold atoms in an optical lattice. Consistent with our theoretical analysis, these repulsively bound pairs exhibit long lifetimes, even under collisions with one another. Signatures of the pairs are also recognised in the characteristic momentum distribution and through spectroscopic measurements. There is no analogue in traditional condensed matter systems of such repulsively bound pairs, due to the presence of strong decay channels. These results exemplify on a new level the strong correspondence between the optical lattice physics of ultracold bosonic atoms and the Bose-Hubbard model, a correspondence which is vital for future applications of these systems to the study of strongly correlated condensed matter systems and to quantum information.Comment: 5 pages, 4 figure

    Conductance fluctuations in mesoscopic normal-metal/superconductor samples

    Full text link
    We study the magnetoconductance fluctuations of mesoscopic normal-metal/superconductor (NS) samples consisting of a gold-wire in contact with a niobium film. The magnetic field strength is varied over a wide range, including values that are larger than the upper critical field B_c2 of niobium. In agreement with recent theoretical predictions we find that in the NS sample the rms of the conductance fluctuations (CF) is by a factor of 2.8 +/- 0.4 larger than in the high field regime where the entire system is driven normal conducting. Further characteristics of the CF are discussed.Comment: 4 pages, REVTEX, 3 eps-figures included. To be published in Phys. Rev. Lett.. Changes: one misplaced figure correcte

    Trapping x‐ray radiation damage from homolytic Se–C bond cleavage in BnSeSeBn crystals (Bn=benzyl, CH2C6H5)

    Get PDF
    Irradiation of dibenzyl diselenide BnSeSeBn with X-ray or UV-light cleaves the Se-C and the Se-Se bonds, inducing stable and metastable radical states. They are inevitably important to all natural and life sciences. Structural changes due to X-ray-induced Se-C bond-cleavage could be pin-pointed in various high-resolution X-ray diffraction experiments for the first time. Extended DFT methods were applied to characterize the solid-state structure and support the refinement of the observed residuals as contributions from the BnSeSe ‱ radical species. The X-ray or UV-irradiated crystalline samples of BnSeSeBn were characterized by solid-state EPR. This paper provides insight that in the course of X-ray structure analysis of selenium compounds not only organo-selenide radicals like RSe ‱ may occur, but also organo diselenide BnSeSe ‱ radicals and organic radicals R ‱ are generated, particularly important to know in structural biology

    Superconducting Proximity Effect and Universal Conductance Fluctuations

    Full text link
    We examine universal conductance fluctuations (UCFs) in mesoscopic normal-superconducting-normal (N-S-N) structures using a numerical solution of the Bogoliubov - de Gennes equation. We discuss two cases depending on the presence (``open'' structure) or absence (``closed'' structure) of quasiparticle transmission. In contrast to N-S structures, where the onset of superconductivity increases fluctuations, we find that UCFs are suppressed by superconductivity for N-S-N structures. We demonstrate that the fluctuations in ``open'' and ``closed'' structures exhibit distinct responses to an applied magnetic field and to an imposed phase variation of the superconducting order parameter.Comment: (4 pages, 5 figures). Corrected typos in equations, added references, changed Fig. 5 and its discussions. Phys. Rev. B, accepted for publicatio

    Allosteric inhibition of carnosinase (CN1) by inducing a conformational shift

    Get PDF
    In humans, low serum carnosinase (CN1) activity protects patients with type 2 diabetes from diabetic nephropathy. We now characterized the interaction of thiol-containing compounds with CN1 cysteine residue at position 102, which is important for CN1 activity. Reduced glutathione (GSH), N-acetylcysteine and cysteine (3.2 \uc2\ub1 0.4, 2.0 \uc2\ub1 0.3, 1.6 \uc2\ub1 0.2 \uc2\ub5mol/mg/h/mM; p <.05) lowered dose-dependently recombinant CN1 (rCN1) efficiency (5.2 \uc2\ub1 0.2 \uc2\ub5mol/mg/h/mM) and normalized increased CN1 activity renal tissue samples of diabetic mice. Inhibition was allosteric. Substitution of rCN1 cysteine residues at position 102 (Mut1C102S) and 229 (Mut2C229S) revealed that only cysteine-102 is influenced by cysteinylation. Molecular dynamic simulation confirmed a conformational rearrangement of negatively charged residues surrounding the zinc ions causing a partial shift of the carnosine ammonium head and resulting in a less effective pose of the substrate within the catalytic cavity and decreased activity. Cysteine-compounds influence the dynamic behaviour of CN1 and therefore present a promising option for the treatment of diabetes

    Genotoxic mixtures and dissimilar action: Concepts for prediction and assessment

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the creative commons Attribution license which permits any use, distribution, and reproduction in any medium, provided the original author(s)and the source are credited.Combinations of genotoxic agents have frequently been assessed without clear assumptions regarding their expected (additive) mixture effects, often leading to claims of synergisms that might in fact be compatible with additivity. We have shown earlier that the combined effects of chemicals, which induce micronuclei (MN) in the cytokinesis-block micronucleus assay in Chinese hamster ovary-K1 cells by a similar mechanism, were additive according to the concept of concentration addition (CA). Here, we extended these studies and investigated for the first time whether valid additivity expectations can be formulated for MN-inducing chemicals that operate through a variety of mechanisms, including aneugens and clastogens (DNA cross-linkers, topoisomerase II inhibitors, minor groove binders). We expected that their effects should follow the additivity principles of independent action (IA). With two mixtures, one composed of various aneugens (colchicine, flubendazole, vinblastine sulphate, griseofulvin, paclitaxel), and another composed of aneugens and clastogens (flubendazole, doxorubicin, etoposide, melphalan and mitomycin C), we observed mixture effects that fell between the additivity predictions derived from CA and IA. We achieved better agreement between observation and prediction by grouping the chemicals into common assessment groups and using hybrid CA/IA prediction models. The combined effects of four dissimilarly acting compounds (flubendazole, paclitaxel, doxorubicin and melphalan) also fell within CA and IA. Two binary mixtures (flubendazole/paclitaxel and flubendazole/doxorubicin) showed effects in reasonable agreement with IA additivity. Our studies provide a systematic basis for the investigation of mixtures that affect endpoints of relevance to genotoxicity and show that their effects are largely additive.UK Food Standards Agenc

    High-Grade Osteosarcoma of the Foot: Presentation, Treatment, Prognostic Factors, and Outcome of 23 Cooperative Osteosarcoma Study Group COSS Patients

    Get PDF
    Osteosarcoma of the foot is a very rare presentation of a rare tumor entity. In a retrospective analysis, we investigated tumor- and treatment-related variables and outcome of patients registered in the Cooperative Osteosarcoma Study Group (COSS) database between January 1980 and April 2016 who suffered from primary high-grade osteosarcoma of the foot. Among the 23 eligible patients, median age was 32 years (range: 6-58 years), 10 were female, and 13 were male. The tarsus was the most commonly affected site (n=16). Three patients had primary metastases. All patients were operated: 5 underwent primary surgery and 18 received surgery following preoperative chemotherapy. In 21 of the 23 patients, complete surgical remission was achieved. In 4 of 17 patients, a poor response to neoadjuvant chemotherapy was observed in the resected primary tumors. Median follow-up was 4.2 years (range: 0.4-18.5). At the last follow-up, 15 of the 23 patients were alive and 8 had died. Five-year overall and event-free survival estimates were 64% (standard error (SE) 12%) and 54% (SE 13%), which is similar to that observed for osteosarcoma in general. Event-free and overall survival correlated with primary metastatic status and completeness of surgery. Our findings show that high-grade osteosarcoma in the foot has a similar outcome as osteosarcoma of other sites
    • 

    corecore