3,149 research outputs found
New CP-violation and preferred-frame tests with polarized electrons
We used a torsion pendulum containing polarized
electrons to search for CP-violating interactions between the pendulum's
electrons and unpolarized matter in the laboratory's surroundings or the sun,
and to test for preferred-frame effects that would precess the electrons about
a direction fixed in inertial space. We find and for AU. Our preferred-frame constraints, interpreted in
the Kosteleck\'y framework, set an upper limit on the parameter eV that should be compared to the benchmark
value eV.Comment: 4 figures, accepted for publication in Physical Review Letter
Introgressive replacement of natives by invading Arion pest slugs.
Hybridization with invasive species is one of the major threats to the phenotypic and genetic persistence of native organisms worldwide. Arion vulgaris (syn. lusitanicus) is a major agricultural pest slug that successfully invaded many European countries in recent decades, but its impact on closely related native species remains unclear. Here, we hypothesized that the regional decline of native A. rufus is connected with the spread of invasive A. vulgaris, and tested whether this can be linked to hybridization between the two species by analyzing 625 Arion sp. along altitudinal transects in three regions in Switzerland. In each region, we observed clear evidence of different degrees of genetic admixture, suggesting recurrent hybridization beyond the first generation. We found spatial differences in admixture patterns that might reflect distinct invasion histories among the regions. Our analyses provide a landscape level perspective for the genetic interactions between invasive and native animals during the invasion. We predict that without specific management action, A. vulgaris will further expand its range, which might lead to local extinction of A. rufus and other native slugs in the near future. Similar processes are likely occurring in other regions currently invaded by A. vulgaris
Energy Dissipation in Driven Granular Matter in the Absence of Gravity
We experimentally investigate the energy dissipation rate in sinusoidally
driven boxes which are partly filled by granular material under conditions of
weightlessness. We identify two different modes of granular dynamics, depending
on the amplitude of driving, . For intense forcing, A>A_0, the material is
found in the collect-and-collide regime where the center of mass of the
granulate moves synchronously with the driven container while for weak forcing,
A<A_0, the granular material exhibits gas-like behavior. Both regimes
correspond to different dissipation mechanisms, leading to different scaling
with amplitude and frequency of the excitation and with the mass of the
granulate. For the collect-and-collide regime, we explain the dependence on
frequency and amplitude of the excitation by means of an effective one-particle
model. For both regimes, the results may be collapsed to a single curve
characterizing the physics of granular dampers.Comment: 5 pages, 3 figure
Spin-Dependent Macroscopic Forces from New Particle Exchange
Long-range forces between macroscopic objects are mediated by light particles
that interact with the electrons or nucleons, and include spin-dependent static
components as well as spin- and velocity-dependent components. We parametrize
the long-range potential between two fermions assuming rotational invariance,
and find 16 different components. Applying this result to electrically neutral
objects, we show that the macroscopic potential depends on 72 measurable
parameters. We then derive the potential induced by the exchange of a new gauge
boson or spinless particle, and compare the limits set by measurements of
macroscopic forces to the astrophysical limits on the couplings of these
particles.Comment: 37 page
Measurement of Linear Stark Interference in 199Hg
We present measurements of Stark interference in the 6
6 transition in Hg, a process whereby a static electric field
mixes magnetic dipole and electric quadrupole couplings into an electric
dipole transition, leading to -linear energy shifts similar to those
produced by a permanent atomic electric dipole moment (EDM). The measured
interference amplitude, = = (5.8 1.5) (kV/cm), agrees with relativistic, many-body predictions and
confirms that earlier central-field estimates are a factor of 10 too large.
More importantly, this study validates the capability of the Hg EDM
search apparatus to resolve non-trivial, controlled, and sub-nHz Larmor
frequency shifts with EDM-like characteristics.Comment: 4 pages, 4 figures, 1 table; revised in response to reviewer comment
Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale
We conducted three torsion-balance experiments to test the gravitational
inverse-square law at separations between 9.53 mm and 55 micrometers, probing
distances less than the dark-energy length scale m. We find with 95% confidence
that the inverse-square law holds () down to a length scale
m and that an extra dimension must have a size m.Comment: 4 pages, 6 figure
Movers and shakers: Granular damping in microgravity
The response of an oscillating granular damper to an initial perturbation is
studied using experiments performed in microgravity and granular dynamics
mulations. High-speed video and image processing techniques are used to extract
experimental data. An inelastic hard sphere model is developed to perform
simulations and the results are in excellent agreement with the experiments.
The granular damper behaves like a frictional damper and a linear decay of the
amplitude is bserved. This is true even for the simulation model, where
friction forces are absent. A simple expression is developed which predicts the
optimal damping conditions for a given amplitude and is independent of the
oscillation frequency and particle inelasticities.Comment: 9 pages, 9 figure
- …
