67 research outputs found

    Masses of ground and excited-state hadrons

    Get PDF
    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table

    Relationship between CD4 T cell turnover, cellular differentiation and HIV persistence during ART

    Get PDF
    The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6AËš6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Multiple band structures in Ta169

    Get PDF
    Rotational structures in the Ta169 nucleus were studied via the Sn124(V51, 6n) reaction. These data were obtained as a side channel of an experiment focusing on Ta171, but the sensitivity provided by the Gammasphere spectrometer proved sufficient for a significant extension of the level scheme of this rare-earth nucleus. Over 170 new transitions and four new band structures were placed in Ta169, including the intruder πi13/2 structure. Linking transitions between all of the sequences were identified, and the relative excitation energies between the different configurations were determined for the first time. The rotational sequences were interpreted within the framework of the cranked shell model

    Alignments, additivity, and signature inversion in odd-odd Ta170: A comprehensive high-spin study

    Get PDF
    High-spin states (I 50) of the odd-odd nucleus Ta170 have been investigated with the Sn124(51V,5n) reaction. The resolving power of Gammasphere has allowed for the observation of eleven rotational bands (eight of which are new) and over 430 transitions (~350 of which are new) in this nucleus. Many interband transitions have been observed such that the relative spins and excitation energies of the 11 bands have been established. This is an unusual circumstance in an odd-odd study. Configurations have been assigned to most of these bands based upon features such as alignment properties, band crossings, B(M1)/B(E2) ratios, and the additivity of Routhians. A systematic study of the frequency at which normal signature ordering occurs in the πh9/2νi13/2 band has been performed and it is found that its trend is opposite to that observed in the πh11/2νi13/2 bands. A possible interpretation of these trends is discussed based on a proton-neutron interaction

    Archaeopteryx and its paleoecology

    No full text
    The various reptilian relationships of Archaeopteryx are reviewed. Crocodilian and theropod ancestry for Archaeopteryx and therefore birds is rejected because of the specialized morphology of both these taxa. In contrast the known morphology of certain thecodonts provides the necessary features from which the primitive avian morphology of Archaeopteryx can be derived. The origin of flight in birds is discussed within the context of the ecological setting of the Solnhofen environment. The primitive level of the flight morphology of Archaeopteryx is used to interpret the flight capabilities of these early birds
    • …
    corecore