191 research outputs found

    Contribution à l'étude des marlins du genre Makaira et de l'espèce Tetrapturus audax

    Get PDF
    Les marlins étudiés sont les animaux capables de nages les plus rapides. L'auteur a étudié successivement leur morphologie, leur répartition géographique et quelques aspects de leur biologie. Suit une analyse de leur appareil locomoteur ainsi qu'une étude de l'influence du rostre sur l'hydrodynamique de ces poissons. Les résultats obtenus ont conduit l'auteur à formuler quelques hypothèses sur le comportement de ces modèles en fluide réel

    Large-Scale Statistical Analysis of Defect Emission in hBN: Revealing Spectral Families and Influence of Flakes Morphology

    Full text link
    Quantum emitters in two-dimensional layered hexagonal boron nitride are quickly emerging as a highly promising platform for next-generation quantum technologies. However, precise identification and control of defects are key parameters to achieve the next step in their development. We conducted a comprehensive study by analyzing over 10,000 photoluminescence emission lines, revealing 11 distinct defect families within the 1.6 to 2.2 eV energy range. This challenges hypotheses of a random energy distribution. We also reported averaged defect parameters, including emission linewidths, spatial density, phonon side bands, and the Debye-Waller factors. These findings provide valuable insights to decipher the microscopic origin of emitters in hBN hosts. We also explored the influence of hBN host morphology on defect family formation, demonstrating its crucial impact. By tuning flake size and arrangement we achieve selective control of defect types while maintaining high spatial density. This offers a scalable approach to defect emission control, diverging from costly engineering methods. It highlights the importance of investigating flake morphological control to gain deeper insights into the origins of defects and to expand the spectral tailoring capabilities of defects in hBN

    Post-Transplant Outcomes in High-Risk Compared with Non-High-Risk Multiple Myeloma: A CIBMTR Analysis.

    Get PDF
    Conventional cytogenetics and interphase fluorescence in situ hybridization (FISH) identify high-risk multiple myeloma (HRM) populations characterized by poor outcomes. We analyzed these differences among HRM versus non-HRM populations after upfront autologous hematopoietic cell transplantation (autoHCT). Between 2008 and 2012, 715 patients with multiple myeloma identified by FISH and/or cytogenetic data with upfront autoHCT were identified in the Center for International Blood and Marrow Transplant Research database. HRM was defined as del17p, t(4;14), t(14;16), hypodiploidy (-Y) or chromosome 1 p and 1q abnormalities; all others were non-HRM. Among 125 HRM patients (17.5%), induction with bortezomib and immunomodulatory agents (imids) was higher compared with non-HRM (56% versus 43%, P \u3c .001) with similar pretransplant complete response (CR) rates (14% versus 16%, P .1). At day 100 post-transplant, at least a very good partial response was 59% in HRM and 61% in non-HRM (P = .6). More HRM patients received post-transplant therapy with bortezomib and imids (26% versus 12%, P = .004). Three-year post-transplant progression-free (PFS) and overall survival (OS) rates in HRM versus non-HRM were 37% versus 49% (P \u3c .001) and 72% versus 85% (P \u3c .001), respectively. At 3 years, PFS for HRM patients with and without post-transplant therapy was 46% (95% confidence interval [CI], 33 to 59) versus 14% (95% CI, 4 to 29) and in non-HRM patients with and without post-transplant therapy 55% (95% CI, 49 to 62) versus 39% (95% CI, 32 to 47); rates of OS for HRM patients with and without post-transplant therapy were 81% (95% CI, 70 to 90) versus 48% (95% CI, 30 to 65) compared with 88% (95% CI, 84 to 92) and 79% (95% CI, 73 to 85) in non-HRM patients with and without post-transplant therapy, respectively. Among patients receiving post-transplant therapy, there was no difference in OS between HRM and non-HRM (P = .08). In addition to HRM, higher stage, less than a CR pretransplant, lack of post-transplant therapy, and African American race were associated with worse OS. In conclusion, we show HRM patients achieve similar day 100 post-transplant responses compared with non-HRM patients, but these responses are not sustained. Post-transplant therapy appeared to improve the poor outcomes of HRM

    Proteomic analysis of cold adaptation in a Siberian permafrost bacterium – Exiguobacterium sibiricum 255–15 by two-dimensional liquid separation coupled with mass spectrometry

    Full text link
    Bacterial cold adaptation in Exiguobacterium sibiricum 255–15 was studied on a proteomic scale using a 2-D liquid phase separation coupled with MS technology. Whole-cell lysates of E. sibiricum 255–15 grown at 4°C and 25°C were first fractionated according to p I by chromatofocusing (CF), and further separated based on hydrophobicity by nonporous silica RP HPLC (NPS-RP-HPLC) which was on-line coupled with an ESI-TOF MS for intact protein M r measurement and quantitative interlysate comparison. Mass maps were created to visualize the differences in protein expression between different growth temperatures. The differentially expressed proteins were then identified by PMF using a MALDI-TOF MS and peptide sequencing by MS/MS with a MALDI quadrupole IT TOF mass spectrometer (MALDI-QIT-TOF MS). A total of over 500 proteins were detected in this study, of which 256 were identified. Among these proteins 39 were cold acclimation proteins (Caps) that were preferentially or uniquely expressed at 4°C and three were homologous cold shock proteins (Csps). The homologous Csps were found to be similarly expressed at 4°C and 25°C, where these three homologous Csps represent about 10% of the total soluble proteins at both 4°C and 25°C.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55850/1/5221_ftp.pd

    Analysis of a compartmental model of endogenous immunoglobulin G metabolism with application to multiple myeloma

    Get PDF
    Immunoglobulin G (IgG) metabolism has received much attention in the literature for two reasons: (i) IgG homeostasis is regulated by the neonatal Fc receptor (FcRn), by a pH-dependent and saturable recycling process, which presents an interesting biological system; (ii) the IgG-FcRn interaction may be exploitable as a means for extending the plasma half-life of therapeutic monoclonal antibodies, which are primarily IgG-based. A less-studied problem is the importance of endogenous IgG metabolism in IgG multiple myeloma. In multiple myeloma, quantification of serum monoclonal immunoglobulin plays an important role in diagnosis, monitoring and response assessment. In order to investigate the dynamics of IgG in this setting, a mathematical model characterizing the metabolism of endogenous IgG in humans is required. A number of authors have proposed a two-compartment nonlinear model of IgG metabolism in which saturable recycling is described using Michaelis-Menten kinetics; however it may be difficult to estimate the model parameters from the limited experimental data that are available. The purpose of this study is to analyse the model alongside the available data from experiments in humans and estimate the model parameters. In order to achieve this aim we linearize the model and use several methods of model and parameter validation: stability analysis, structural identifiability analysis, and sensitivity analysis based on traditional sensitivity functions and generalized sensitivity functions. We find that all model parameters are identifiable, structurally and taking into account parameter correlations, when several types of model output are used for parameter estimation. Based on these analyses we estimate parameter values from the limited available data and compare them with previously published parameter values. Finally we show how the model can be applied in future studies of treatment effectiveness in IgG multiple myeloma with simulations of serum monoclonal IgG responses during treatment

    Rheological constitutive equation for model of soft glassy materials

    Full text link
    We solve exactly and describe in detail a simplified scalar model for the low frequency shear rheology of foams, emulsions, slurries, etc. [P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)]. The model attributes similarities in the rheology of such ``soft glassy materials'' to the shared features of structural disorder and metastability. By focusing on the dynamics of mesoscopic elements, it retains a generic character. Interactions are represented by a mean-field noise temperature x, with a glass transition occurring at x=1 (in appropriate units). The exact solution of the model takes the form of a constitutive equation relating stress to strain history, from which all rheological properties can be derived. For the linear response, we find that both the storage modulus G' and the loss modulus G'' vary with frequency as \omega^{x-1} for 1<x<2, becoming flat near the glass transition. In the glass phase, aging of the moduli is predicted. The steady shear flow curves show power law fluid behavior for x<2, with a nonzero yield stress in the glass phase; the Cox-Merz rule does not hold in this non-Newtonian regime. Single and double step strains further probe the nonlinear behavior of the model, which is not well represented by the BKZ relation. Finally, we consider measurements of G' and G'' at finite strain amplitude \gamma. Near the glass transition, G'' exhibits a maximum as \gamma is increased in a strain sweep. Its value can be strongly overestimated due to nonlinear effects, which can be present even when the stress response is very nearly harmonic. The largest strain \gamma_c at which measurements still probe the linear response is predicted to be roughly frequency-independent.Comment: 24 pages, REVTeX, uses multicol, epsf and amssymp; 20 postscript figures (included). Minor changes to text (relation to mode coupling theory, update on recent foam simulations etc.) and figures (emphasis on low frequency regime); typos corrected and reference added. Version to appear in Physical Review

    Holographic Traction Force Microscopy

    Get PDF
    Traction Force Microscopy (TFM) computes the forces exerted at the surface of an elastic material by measuring induced deformations in volume. It is used to determine the pattern of the adhesion forces exerted by cells or by cellular assemblies grown onto a soft deformable substrate. Typically, colloidal particles are dispersed in the substrate and their displacement is monitored by fluorescent microscopy. As with any other fluorescent techniques, the accuracy in measuring a particule’s position is ultimately limited by the number of evaluated fluorescent photons. Here, we present a TFM technique based on the detection of probe particle displacements by holographic tracking microscopy. We show that nanometer scale resolutions of the particle displacements can be obtained and determine the maximum volume fraction of markers in the substrate. We demonstrate the feasibility of the technique experimentally and measure the three-dimensional force fields exerted by colorectal cancer cells cultivated onto a polyacrylamide gel substrate

    Integrated analysis of randomized controlled trials evaluating bortezomib + lenalidomide + dexamethasone or bortezomib + thalidomide + dexamethasone induction in transplant-eligible newly diagnosed multiple myeloma

    Full text link
    ObjectiveProviding the most efficacious frontline treatment for newly diagnosed multiple myeloma (NDMM) is critical for patient outcomes. No direct comparisons have been made between bortezomib + lenalidomide + dexamethasone (VRD) and bortezomib + thalidomide + dexamethasone (VTD) induction regimens in transplant-eligible NDMM.MethodsAn integrated analysis was performed using patient data from four trials meeting prespecified eligibility criteria: two using VRD (PETHEMA GEM2012 and IFM 2009) and two using VTD (PETHEMA GEM2005 and IFM 2013-04).ResultsThe primary endpoint was met, with VRD demonstrating a noninferior rate of at least very good partial response (>= VGPR) after induction vs VTD. GEM comparison demonstrated improvement in the >= VGPR rate after induction for VRD vs VTD (66.3% vs 51.2%; P = .00281) that increased after transplant (74.4% vs 53.5%). Undetectable minimal residual disease rates post induction (46.7% vs 34.9%) and post transplant (62.4% vs 47.3%) support the benefit of VRD vs VTD. Treatment-emergent adverse events leading to study and/or treatment discontinuation were less frequent with VRD (3%, GEM2012; 6%, IFM 2009) vs VTD (11%, IFM 2013-04).ConclusionThese results supported the benefit of VRD over VTD for induction in transplant-eligible patients with NDMM. The trials included are registered with ClinicalTrials.gov (NCT01916252, NCT01191060, NCT00461747, and NCT01971658)

    Temporal fluctuations of waves in weakly nonlinear disordered media

    Full text link
    We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the system "coherent wave + nonlinear disordered medium". The feedback is provided by the multiple scattering. The development of instability is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in Phys. Rev.
    • …
    corecore