6 research outputs found

    Heterologous hyperimmune polyclonal antibodies against SARS-COV-2: A broad coverage, affordable, and scalable potential immunotherapy for Covid-19

    Get PDF
    The emergence and dissemination of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic triggered a global public health crisis. Although several SARS-CoV-2 vaccines have been developed, demand far exceeds supply, access to them is inequitable, and thus, populations in low- and middle-income countries are unlikely to be protected soon (1). Furthermore, there are no specific therapies available, which is a challenge for COVID-19 patient care (2). Thus, the appearance of SARS-CoV-2 variants and reports of reinfections associated with immune escape (3, 4) highlight the urgent need for effective and broad coverage COVID-19 therapeutics. Intravenous administration of human or heterologous antibodies is a therapy successfully used in patients with viral respiratory diseases (5). Accordingly, formulations containing SARS-CoV-2 specific antibodies are an attractive therapeutic option for COVID-19 patients (6). SARS-CoV-2 specific antibodies could limit infection by direct virion neutralization and/or by targeting infected cells for elimination via complement or antibody-mediated cytotoxicity (6). Specific SARS-CoV-2 antibody-based therapeutics include convalescent plasma (CP), monoclonal antibodies (mAbs), human polyclonal IgG formulations purified from CP or transgenic animals, and heterologous hyperimmune polyclonal antibodies (pAbs) (6). Although the window for using antibody-based therapeutics varies, clinical data show that they are mainly effective if administered early after symptoms onset (6).Universidad de Costa Rica/[741-C0-198]/UCR/Costa RicaCaja Costarricense del Seguro Social/[]/CCSS/Costa RicaBanco Centroamericano de Integración Económica/[]/BCIE/Costa RicaGerman academic exchange services/[57592642]/DAAD/AlemaniaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de MedicinaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET

    Potent virucidal activity against Flaviviridae of a group IIA phospholipase A2 isolated from the venom of Bothrops asper

    No full text
    Secreted phospholipase A2 (sPLA2) molecules are small, calcium-dependent enzymes involved in many biological processes. Viperid venoms possess gIIA sPLA2s and sPLA2-like proteins, both having homology to human gIIA sPLA2, an innate immunity enzyme. We evaluated the antiviral action of Mt–I (catalytically-active sPLA2) and Mt-II (catalytically-inactive variant) isolated from the venom of Bothrops asper, against a diverse group of viruses. Yellow Fever and Dengue (enveloped) viruses were highly susceptible to inactivation by the snake proteins, in contrast to Sabin (non-enveloped; Polio vaccine strain), and Influenza A, Herpes simplex 1 and 2, and Vesicular Stomatitis (enveloped) viruses. Titration of the antiviral effect against Dengue virus revealed Mt–I to be highly potent (IC50 0.5–2 ng/mL), whereas Mt-II was 1000-fold weaker. This large difference suggested a requirement for PLA2 activity, which was confirmed by chemical inactivation of Mt–I. A synthetic peptide representing the membrane-disrupting region of Mt-II, previously shown to have bactericidal effect, lacked antiviral action, suggesting that the weak virucidal effect observed for Mt-II is likely caused by contamination with traces of Mt–I. On the other hand, Mt–I was demonstrated to act by a direct virucidal mechanism prior to infection, and not by an independent effect on host cells, either pretreated, or exposed to Mt–I after virus infection. Interestingly, DENV2 propagated in mosquito cells was much more sensitive to the action of Mt–I, compared to human cell-propagated virus. Therefore, differences in envelope membrane composition may be crucially involved in the observed virucidal action of PLA2 enzymes.Universidad de Costa Rica/[803-B8-115]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Clinical profiles at the time of diagnosis of COVID-19 in Costa Rica during the pre-vaccination period using a machine learning approach

    No full text
    Background: The clinical manifestations of COVID-19 disease, caused by the SARS-CoV-2 virus, define a large spectrum of symptoms that are mainly dependent on the human host conditions. In Costa Rica, almost 319 000 cases have been reported during the first third of 2021, contrasting to the 590 000 fully vaccinated people. In the pre-vaccination period (the year 2020), this country accumulated 169 321 cases and 2185 deaths. Methods: To describe the clinical presentations at the time of diagnosis of COVID-19 in Costa Rica during the pre-vaccination period, we implemented a symptom-based clustering using machine learning to identify clusters or clinical profiles among 18 974 records of positive cases. Profiles were compared based on symptoms, risk factors, viral load, and genomic features of the SARS-CoV-2 sequence. Results: A total of seven COVID-19 clinical profiles were identified, which were characterized by a specific composition of symptoms. In the comparison between clusters, a lower viral load was found for the asymptomatic group, while the risk factors and the SARS-CoV-2 genomic features were distributed among all the clusters. No other distribution patterns were found for age, sex, vital status, and hospitalization. Conclusion: During the pre-vaccination time in Costa Rica, the clinical manifestations at the time of diagnosis of COVID-19 were described in seven profiles. The host co-morbidities and the SARS-CoV-2 genotypes are not specific of a particular profile, rather they are present in all the groups, including asymptomatic cases. In further analyses, these results will be compared against the profiles of cases during the vaccination period.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    SARS-CoV-2 genomic surveillance in Costa Rica: Evidence of a divergent population and an increased detection of a spike T1117I mutation

    No full text
    Genome sequencing is a key strategy in the surveillance of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Latin America is the hardest-hit region of the world, accumulating almost 20% of COVID-19 cases worldwide. In Costa Rica, from the first detected case on March 6th to December 31st almost 170,000 cases have been reported. We analyzed the genomic variability during the SARS-CoV-2 pandemic in Costa Rica using 185 sequences, 52 from the first months of the pandemic, and 133 from the current wave. Three GISAID clades (G, GH, and GR) and three PANGOLIN lineages (B.1, B.1.1, and B.1.291) were predominant, suggesting multiple re-introductions from other regions. The whole-genome variant calling analysis identified a total of 283 distinct nucleotide variants, following a power-law distribution with 190 single nucleotide mutations in a single sequence, and only 16 mutations were found in >5% sequences. These mutations were distributed through the whole genome. The prevalence of worldwide-found variant D614G in the Spike (98.9% in Costa Rica), ORF8 L84S (1.1%) is similar to what is found elsewhere. Interestingly, the frequency of mutation T1117I in the Spike has increased during the current pandemic wave beginning in May 2020 in Costa Rica, reaching 29.2% detection in the full genome analyses in November 2020. This variant has been observed in less than 1% of the GISAID reported sequences worldwide in 2020. Structural modeling of the Spike protein with the T1117I mutation suggests a potential effect on the viral oligomerization needed for cell infection, but no differences with other genomes on transmissibility, severity nor vaccine effectiveness are predicted. In conclusion, genome analyses of the SARS-CoV-2 sequences over the course of the COVID-19 pandemic in Costa Rica suggest the introduction of lineages from other countries and the detection of mutations in line with other studies, but pointing out the local increase in the detection of Spike-T1117I variant. The genomic features of this virus need to be monitored and studied in further analyses as part of the surveillance program during the pandemic.Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud/[]/INCIENSA/Costa RicaUniversidad de Costa Rica/[803-C0-196]/UCR/Costa RicaCOINGESA-CR Consorcio Interinstitucional de Estudios Genómicos del SARS-CoV-2 Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Genetic evolution of influenza viruses among selected countries in Latin America, 2017-2018.

    No full text
    OBJECTIVE:Since the 2009 influenza pandemic, Latin American (LA) countries have strengthened their influenza surveillance systems. We analyzed influenza genetic sequence data from the 2017 through 2018 Southern Hemisphere (SH) influenza season from selected LA countries, to map the availability of influenza genetic sequence data from, and to describe, the 2017 through 2018 SH influenza seasons in LA. METHODS:We analyzed influenza A/H1pdm09, A/H3, B/Victoria and B/Yamagata hemagglutinin sequences from clinical samples from 12 National Influenza Centers (NICs) in ten countries (Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico, Paraguay, Peru and Uruguay) with a collection date from epidemiologic week (EW) 18, 2017 through EW 43, 2018. These sequences were generated by the NIC or the WHO Collaborating Center (CC) at the U.S Centers for Disease Control and Prevention, uploaded to the Global Initiative on Sharing All Influenza Data (GISAID) platform, and used for phylogenetic reconstruction. FINDINGS:Influenza hemagglutinin sequences from the participating countries (A/H1pdm09 n = 326, A/H3 n = 636, B n = 433) were highly concordant with the genetic groups of the influenza vaccine-recommended viruses for influenza A/H1pdm09 and influenza B. For influenza A/H3, the concordance was variable. CONCLUSIONS:Considering the constant evolution of influenza viruses, high-quality surveillance data-specifically genetic sequence data, are important to allow public health decision makers to make informed decisions about prevention and control strategies, such as influenza vaccine composition. Countries that conduct influenza genetic sequencing for surveillance in LA should continue to work with the WHO CCs to produce high-quality genetic sequence data and upload those sequences to open-access databases

    High Efficacy of Therapeutic Equine Hyperimmune Antibodies Against SARS-CoV-2 Variants of Concern

    Get PDF
    SARS-CoV-2 variants of concern show reduced neutralization by vaccine-induced and therapeutic monoclonal antibodies; therefore, treatment alternatives are needed. We tested therapeutic equine polyclonal antibodies (pAbs) that are being assessed in clinical trials in Costa Rica against five globally circulating variants of concern: alpha, beta, epsilon, gamma and delta, using plaque reduction neutralization assays. We show that equine pAbs efficiently neutralize the variants of concern, with inhibitory concentrations in the range of 0.146–1.078µg/mL, which correspond to extremely low concentrations when compared to pAbs doses used in clinical trials. Equine pAbs are an effective, broad coverage, low-cost and a scalable COVID-19 treatment.German academic exchange services/[57592642]/DAAD/AlemaniaUniversidad de Costa Rica/[741-C0-198]/UCR/Costa RicaBanco Centroamericano de Integración Económica/[]/BCIE/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Docencia::Salud::Facultad de MicrobiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin
    corecore