3,084 research outputs found

    Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities

    Get PDF
    Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration

    Glyburide Disposition During Pregnancy

    Get PDF

    Attractive Hubbard Model on a Honeycomb Lattice

    Full text link
    We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t < 5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half-filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence throughout the sample are studied as U is increased and T is lowered

    Implementation of Monte-Carlo transport in the general relativistic SpEC code

    Get PDF
    Neutrino transport and neutrino-matter interactions are known to play an important role in the evolution of neutron star mergers, and of their post-merger remnants. Neutrinos cool remnants, drive post-merger winds, and deposit energy in the low-density polar regions where relativistic jets may eventually form. Neutrinos also modify the composition of the ejected material, impacting the outcome of nucleosynthesis in merger outflows and the properties of the optical/infrared transients that they power (kilonovae). So far, merger simulations have largely relied on approximate treatments of the neutrinos (leakage, moments) that simplify the equations of radiation transport in a way that makes simulations more affordable, but also introduces unquantifiable errors in the results. To improve on these methods, we recently published a first simulation of neutron star mergers using a low-cost Monte-Carlo algorithm for neutrino radiation transport. Our transport code limits costs in optically thick regions by placing a hard ceiling on the value of the absorption opacity of the fluid, yet all approximations made within the code are designed to vanish in the limit of infinite numerical resolution. We provide here an in-depth description of this algorithm, of its implementation in the SpEC merger code, and of the expected impact of our approximations in optically thick regions. We argue that the latter is a subdominant source of error at the accuracy reached by current simulations, and for the interactions currently included in our code. We also provide tests of the most important features of this code

    Dynamic cratering of graphite : experimental results and simulations

    Get PDF
    The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest since it is widely used as elementary component in composite materials. In this paper we study a porous polycrystalline graphite under HVI and laser impact, both leading to strong debris ejection and cratering. First, we report new experimental data for normal impacts at 4100 and 4200 m s-1 of a 500-μm-diameter steel sphere on a thick sample of graphite. In a second step, dynamic loadings have been performed with a high-power nanosecond laser facility. High-resolution X-ray tomographies and observations with a scanning electron microscope have been performed in order to visualize the crater shape and the subsurface cracks. These two post-mortem diagnostics also provide evidence that, in the case of HVI tests, the fragmented steel sphere was buried into the graphite target below the crater surface. The current study aims to propose an interpretation of the results, including projectile trapping. In spite of their efficiency to capture overall trends in crater size and shape, semi-empirical scaling laws do not usually predict these phenomena. Hence, to offer better insight into the processes leading to this observation, the need for a computational damage model is argued. After discussing energy partitioning in order to identify the dominant physical mechanisms occurring in our experiments, we propose a simple damage model for porous and brittle materials. Compaction and fracture phenomena are included in the model. A failure criterion relying on Weibull theory is used to relate material tensile strength to deformation rate and damage. These constitutive relations have been implemented in an Eulerian hydrocode in order to compute numerical simulations and confront them with experiments. In this paper, we propose a simple fitting procedure of the unknown Weibull parameters based on HVI results. Good agreement is found with experimental observations of crater shapes and dimensions, as well as debris velocity. The projectile inclusion below the crater is also reproduced by the model and a mechanism is proposed for the trapping process. At least two sets of Weibull parameters can be used to match the results. Finally, we show that laser experiment simulations may discriminate in favor of one set of parameters

    Association between the inflammatory potential of diet and stress among female college students

    Get PDF
    A pro-inflammatory diet may have an adverse influence on stress and inflammatory biomarker levels among college students. The dietary inflammatory index (DII®) is a tool used to assess the inflammatory potential of a diet. However, evidence for the association between DII and stress is limited. We examined the association between energy-adjusted DII (E-DIITM), high sensitivity-C-reactive protein [hs-CRP], and stress among female college students. This cross-sectional study included 401 randomly selected female students, aged 19-35 years. Data collection included blood, anthropometric measurements, a healthy-history questionnaire, the perceived stress scale (PSS-10), the Saudi food frequency questionnaire (FFQ), and E-DII. Multiple linear regression analyses were used to examine the association between FFQ-derived E-DII score, hs-CRP, and PSS. A higher E-DII score per 1SD (1.8) was associated with a 2.4-times higher PSS score (95% CI: 1.8, 3.1). Higher hs-CRP per 1SD (3.3 mg/L) was associated with a 0.9 (95% CI: 0.7-1.1) times higher PSS score, independent of lifestyle and dietary factors. Our findings indicate that pro-inflammatory diets were highly prevalent among Saudi college students and were associated with higher stress levels. Consideration of the role of stress and focusing on anti-inflammatory foods may be key for healthier dietary habits

    Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux

    Full text link
    We report results from 120 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4; in final PRL revie

    Antagonists of growth hormone-releasing hormone (GH-RH) inhibit IGF-II production and growth of HT-29 human colon cancers

    Get PDF
    Insulin-like growth factors (IGFs) I and II are implicated in progression of various tumours including colorectal carcinomas. To interfere with the production of IGFs, we treated male nude mice bearing xenografts of HT-29 human colon cancer with various potent growth hormone-releasing hormone (GH-RH) antagonists. Twice daily injections of antagonist MZ-4-71, 10 μg intraperitoneally or 5 μg subcutaneously (s.c.) resulted in a significant 43–45% inhibition of tumour growth. Longer acting GH-RH antagonists, MZ-5-156 and JV-1-36 given once daily at doses of 20 μg s.c. produced a 43–58% decrease in volume and weight of cancers. Histological analyses of HT-29 cancers demonstrated that both a decreased cell proliferation and an increased apoptosis contributed to tumour inhibition. GH-RH antagonists did not change serum IGF-I or IGF-II levels, but significantly decreased IGF-II concentration and reduced mRNA expression for IGF-II in tumours. In vitro studies showed that HT-29 cells produced and secreted IGF-II into the medium, and addition of MZ-5-156 dose-dependently decreased IGF-II production by about 40% as well as proliferation of HT-29 cells. Our studies demonstrate that GH-RH antagonists inhibit growth of HT-29 human colon cancers in vivo and in vitro. The effect of GH-RH antagonists may be mediated through a reduced production and secretion of IGF-II by cancer cells. © 2000 Cancer Research Campaig

    Atomic lattice excitons: from condensates to crystals

    Full text link
    We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed by fermionic atoms in two bands of an optical lattice. Such a system provides a clean setup to study fundamental properties of excitons, ranging from condensation to exciton crystals (which appear for a large effective mass ratio between particles and holes). Using both mean-field treatments and 1D numerical computation, we discuss the properities of ALEs under varying conditions, and discuss in particular their preparation and measurement.Comment: 19 pages, 15 figures, changed formatting for journal submission, corrected minor errors in reference list and tex

    Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    Full text link
    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened-Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened-Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened-Coulomb repulsion. For relatively large polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened-Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases, upon increasing the range of the screened-Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens. Matte
    corecore