18 research outputs found

    Mechanotransduction is a context-dependent activator of TGF-β signaling in mesenchymal stem cells

    Get PDF
    We previously found that surface topographies induce the expression of the Scxa gene, encoding Scleraxis in tenocytes. Because Scxa is a TGF-β responsive gene, we investigated the link between mechanotransduction and TGF-β signaling. We discovered that mesenchymal stem cells exposed to both micro-topographies and TGF-β2 display synergistic induction of SMAD phosphorylation and transcription of the TGF-β target genes SCX, a-SMA, and SOX9. Pharmacological perturbations revealed that Rho/ROCK/SRF signaling is required for this synergistic response. We further found an activation of the early response genes SRF and EGR1 during the early adaptation phase on micro-topographies, which coincided with higher expression of the TGF-β type-II receptor gene. Of interest, PKC activators Prostratin and Ingenol-3, known for inducing actin reorganization and activation of serum response elements, were able to mimic the topography-induced TGF-β response. These findings provide novel insights into the convergence of mechanobiology and TGF-β signaling, which can lead to improved culture protocols and therapeutic applications

    Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns

    Get PDF
    Human mesenchymal stem (hMSCs) are defined as multi-potent colony-forming cells expressing a specific subset of plasma membrane markers when grown on flat tissue culture polystyrene. However, as soon as hMSCs are used for transplantation, they are exposed to a 3D environment, which can strongly impact cell physiology and influence proliferation, differentiation and metabolism. Strategies to control in vivo hMSC behavior, for instance in stem cell transplantation or cancer treatment, are skewed by the un-physiological flatness of the standard well plates. Even though it is common knowledge that cells behave differently in vitro compared to in vivo, only little is known about the underlying adaptation processes. Here, we used micrometer-scale defined surface topographies as a model to describe the phenotype of hMSCs during this adaptation to their new environment. We used well established techniques to compare hMSCs cultured on flat and topographically enhanced polystyreneand observed dramatically changed cell morphologies accompanied by shrinkage of cytoplasm and nucleus, a decreased overall cellular metabolism, and slower cell cycle progression resulting in a lower proliferation rate in cells exposed to surface topographies. We hypothesized that this reduction in proliferation rate effects their sensitivity to certain cancer drugs, which was confirmed by higher survival rate of hMSCs cultured on topographies exposed to paclitaxel. Thus, micro-topographies can be used as a model system to mimic the natural cell micro-environment, and be a powerful tool to optimize cell treatment in vitro

    Exploring the nature of prediagnostic blood transcriptome markers of chronic lymphocytic leukemia by assessing their overlap with the transcriptome at the clinical stage

    Get PDF
    Background: We recently identified 700 genes whose expression levels were predictive of chronic lymphocytic leukemia (CLL) in a genome-wide gene expression analysis of prediagnostic blood from future cases and matched controls. We hypothesized that a large fraction of these markers were likely related to early disease manifestations. Here we aim to gain a better understanding of the natural history of the identified markers by comparing results from our prediagnostic analysis, the only prediagnostic analysis to date, to results obtained from a meta-analysis of a series of publically available transcriptomics profiles obtained in incident CLL cases and controls. Results: We observed considerable overlap between the results from our prediagnostic study and the clinical CLL signals (p-value for overlap Bonferroni significant markers 0.01; p-value for overlap nominal significant markers < 2.20e-16). We observed similar patterns with time to diagnosis and similar functional annotations for the markers that were identified in both settings compared to the markers that were only identified in the prediagnostic study. These results suggest that both gene sets operate in similar pathways. Conclusion: An overlap exists between expression levels of genes predictive of CLL identified in prediagnostic blood and expression levels of genes associated to CLL at the clinical stage. Our analysis provides insight in a set of genes for which expression levels can be used to follow the time-course of the disease; providing an opportunity to study CLL progression in more detail in future studies

    Associations between genome-wide gene expression and ambient nitrogen oxides (NOx)

    No full text
    BACKGROUND: We hypothesize that biological perturbations due to exposure to ambient air pollution are reflected in gene-expression levels in peripheral blood mononuclear cells. METHODS: We assessed the association between exposure to ambient air pollution and genome-wide gene-expression levels in peripheral blood mononuclear cells collected from 550 healthy subjects participating in cohorts from Italy and Sweden. Annual air pollution estimates of nitrogen oxides (NOx) at time of blood collection (1990 to 2006) were available from the ESCAPE study. In addition to univariate analysis and two variable selection methods to investigate the association between expression and exposure to NOx, we applied gene set enrichment analysis to assess overlap between our most perturbed genes and gene sets hypothesized to be related to air pollution and cigarette smoking. Finally, we assessed associations between NOx and CpG island methylation at the identified genes. RESULTS: Annual average NOx exposure in the Italian and Swedish cohorts was 94.2 µg/m3, and 6.7 µg/m3, respectively. Long-term exposure to NOx was associated with seven probes in the Italian cohort and one probe in the Swedish (and combined) cohorts. For genes AHCYL2 and MTMR2 changes were also seen in the methylome. Genes hypothesized to be downregulated due to cigarette smoking were enriched among the most strongly downregulated genes from our study. CONCLUSION: This study provides evidence of subtle changes in gene expression related to exposure to long-term NOx. On a global level the observed changes in the transcriptome may indicate similarities between air pollution and tobacco induced changes in the transcriptome
    corecore