232 research outputs found

    Evidence for Strong-coupling S-wave Superconductivity in MgB2 :11B NMR Study

    Get PDF
    We have investigated a gap structure in a newly-discovered superconductor, MgB2 through the measurement of 11B nuclear spin-lattice relaxation rate, ^{11}(1/T_1). ^{11}(1/T_1) is proportional to the temperature (T) in the normal state, and decreases exponentially in the superconducting (SC) state, revealing a tiny coherence peak just below T_c. The T dependence of 1/T_1 in the SC state can be accounted for by an s-wave SC model with a large gap size of 2\Delta /k_BT_c \sim 5 which suggests to be in a strong-coupling regime.Comment: 2 pages with 1 figur

    Interaction of Laser Radiation with Plasmas and Nonadiabatic Motion of Particles in Magnetic Fields

    Get PDF
    Contains research objectives.United States Atomic Energy Commission (Contract AT(30-1)-3285

    Fermi-liquid ground state in n-type copper-oxide superconductor Pr0.91Ce0.09LaCuO4-y

    Full text link
    We report nuclear magnetic resonance studies on the low-doped n-type copper-oxide Pr_{0.91}LaCe_{0.09}CuO_{4-y} (T_c=24 K) in the superconducting state and in the normal state uncovered by the application of a strong magnetic field. We find that when the superconductivity is removed, the underlying ground state is the Fermi liquid state. This result is at variance with that inferred from previous thermal conductivity measurement and contrast with that in p-type copper-oxides with a similar doping level where high-T_c superconductivity sets in within the pseudogap phase. The data in the superconducting state are consistent with the line-nodes gap model.Comment: version to appear in Phys. Rev. Let

    11^{11}B NMR study of pure and lightly carbon doped MgB2_2 superconductors

    Full text link
    We report a 11^{11}B NMR line shape and spin-lattice relaxation rate (1/(T1T)1/(T_1T)) study of pure and lightly carbon doped MgB2x_{2-x}Cx_{x} for x=0x=0, 0.02, and 0.04, in the vortex state and in magnetic field of 23.5 kOe. We show that while pure MgB2_2 exhibits the magnetic field distribution from superposition of the normal and the Abrikosov state, slight replacement of boron with carbon unveils the magnetic field distribution of the pure Abrikosov state. This indicates a considerable increase of Hc2cH_{c2}^c with carbon doping with respect to pure MgB2_2. The spin-lattice relaxation rate 1/(T1T)1/(T_1T) demonstrates clearly the presence of a coherence peak right below TcT_c in pure MgB2_2, followed by a typical BCS decrease on cooling. However, at temperatures lower than 10\approx 10K strong deviation from the BCS behavior is observed, probably from residual contribution of the vortex dynamics. In the carbon doped systems both the coherence peak and the BCS temperature dependence of 1/(T1T)1/(T_1T) weaken, an effect attributed to the gradual shrinking of the σ\sigma hole cylinders of the Fermi surface with electron doping.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    New magnetic coherence effect in superconducting La_{2-x}Sr_{x}CuO_{4}

    Full text link
    We have used inelastic neutron scattering to examine the magnetic fluctuations at intermediate frequencies in the simplest high temperature superconductor, La_{2-x}Sr_{x}Cu_{4}. The suppression of the low energy magnetic response in the superconducting state is accompanied by an increase in the response at higher energies. Just above a threshold energy of ~7 meV there is additional scattering present below T_{c} which is characterised by an extraordinarily long coherence length, in excess of 50 \AA.Comment: 11 pages, RevTeX, 4 postscript figure

    Occupational Exposure to Pfiesteria Species in Estuarine Waters Is Not a Risk Factor for Illness

    Get PDF
    BACKGROUND: Exposure to the dinoflagellate Pfiesteria has, under certain circumstances, been associated with deficits in human learning and memory. However, uncertainties remain about the health risk of chronic, low-level exposures (as seen among occupationally exposed commercial fishermen), particularly in light of studies suggesting that Pfiesteria strains are widespread in the estuarine environment in the U.S. mid-Atlantic region. METHODS: We selected an initial cohort of 152 persons, including 123 persons with regular, occupational exposure to the Chesapeake Bay; 107 of the cohort members were followed for the full four summer “seasons” of the study. Cohort members were questioned biweekly about symptoms, and data were collected about the areas of the bay in which they worked. These latter data were matched with data on the presence or absence of Pfiesteria in each area, based on polymerase chain reaction analysis of > 3,500 water samples. Cohort members underwent neuropsychological testing at the beginning and end of each summer season. RESULTS: No correlation was found between work in an area where Pfiesteria was identified and specific symptomatology or changes on neuropsychological tests. CONCLUSIONS: Although high-level or outbreak-associated exposure to Pfiesteria species (or specific strains within a species) may have an effect on health, routine occupational exposure to estuarine environments in which these organisms are present does not appear to pose a significant health risk

    Unconventional Superconductivity in Heavy Fermion Systems

    Full text link
    We review the studies on the emergent phases of superconductvity and magnetism in the ff-electron derived heavy-fermion (HF) systems by means of the nuclear-quadrupole-resonance (NQR) under pressure. These studies have unraveled a rich variety of the phenomena in the ground state of HF systems. In this article, we highlight the novel phase diagrams of magnetism and unconventional superconductivity (SC) in CeCu2_2Si2_2, HF antiferromagnets CeRhIn5_5, and CeIn3_3. A new light is shed on the difference and common features on the interplay between magnetism and SC on the magnetic criticality.Comment: 15 pages, 13 figures, to appear in J. Phys. Soc. JPN, 74, No.1 (2005), special issue "Kondo Effect- 40 Years after the Discovery
    corecore