4 research outputs found

    Lipoprotein(a) levels and long-term cardiovascular risk in the contemporary era of statin therapy

    No full text
    Lipoprotein(a) [Lp(a)] has enhanced atherothrombotic properties. The ability of Lp(a) levels to predict adverse cardiovascular outcomes in patients undergoing coronary angiography has not been examined. The relationship between serum Lp(a) levels and both the extent of angiographic disease and 3-year incidence of major adverse cardiovascular events (MACE: death, myocardial infarction, stroke, and coronary revascularization) was investigated in 2,769 patients who underwent coronary angiography [median Lp(a) 16.4 mg/dl, elevated levels (≥30 mg/dl) in 38%]. An elevated Lp(a) was associated with a 2.3-fold [95% confidence interval (CI), 1.7–3.2, P < 0.001] greater likelihood of having a significant angiographic stenosis and 1.5-fold (95 CI, 1.3–1.7, P < 0.001) greater chance of three-vessel disease. Lp(a)≥30 mg/dl was associated with a greater rate of MACE (41.8 vs. 35.8%, P = 0.005), primarily due to a greater need for coronary revascularization (30.9 vs. 26.0%, P = 0.02). A relationship between Lp(a) levels and cardiovascular outcome was observed in patients with an LDL cholesterol (LDL-C) ≥70-100 mg/dl (P = 0.049) and >100 mg/dl (P = 0.02), but not <70 mg/dl (P = 0.77). Polymorphisms of Lp(a) were also associated with both plasma Lp(a) levels and coronary stenosis, but not a greater rate of MACE. Lp(a) levels correlate with the extent of obstructive disease and predict the need for coronary revascularization in subjects with suboptimal LDL-C control. This supports the need to intensify lipid management in patients with elevated Lp(a) levels

    Effect of Extended-Release Niacin on Serum Lipids and on Endothelial Function in Adults With Sickle Cell Anemia and Low High-Density Lipoprotein Cholesterol Levels

    No full text
    Through bound apolipoprotein A-I (apoA-I), high density lipoprotein cholesterol (HDL-C) activates endothelial nitric oxide synthase, inducing vasodilation. Because patients with sickle cell disease (SCD)have low apoA-I andendothelial dysfunction,we conducted a randomized, double-blinded, placebo-controlled trial to test whether extended-release niacin (niacin-ER) increases apoA-I-containing HDL-C, and improves vascular function in SCD. Twenty-seven SCD patientswith HDL-C <39 mg/dL or apoA-I <99 mg/dL were randomized to 12 weeks of niacin-ER, increased in 500mg increments to a maximum of 1500mg daily, or placebo. The primary outcome was the absolute change in HDL-C after 12 weeks, with endothelial function assessed before and at the end of treatment. Niacin-ER-treated patients trended to greater increase in HDL-C compared with placebo treatment at 12 weeks (5.1±7.7 vs. 0.9±3.8 mg/dL, one-tailed p=0.07), associated with significantly greater, improvements in the ratios of low-density lipoprotein to HDL-C (1.24 vs. 1.95, p = 0.003), and apolipoprotein B to apoA-I (0.46 vs. 0.58, p = 0.03) compared with placebo-treated patients. No improvements were detected in three independent vascular physiology assays of endothelial function. Thus, the relatively small changes in HDL-C achieved by the dose of niacin-ER used in our study are not associated with improved vascular function in patients with SCD with initially low levels of apoA-I or HDL-C
    corecore