221 research outputs found

    Free energy and configurational entropy of liquid silica: fragile-to-strong crossover and polyamorphism

    Full text link
    Recent molecular dynamics (MD) simulations of liquid silica, using the ``BKS'' model [Van Beest, Kramer and van Santen, Phys. Rev. Lett. {\bf 64}, 1955 (1990)], have demonstrated that the liquid undergoes a dynamical crossover from super-Arrhenius, or ``fragile'' behavior, to Arrhenius, or ``strong'' behavior, as temperature TT is decreased. From extensive MD simulations, we show that this fragile-to-strong crossover (FSC) can be connected to changes in the properties of the potential energy landscape, or surface (PES), of the liquid. To achieve this, we use thermodynamic integration to evaluate the absolute free energy of the liquid over a wide range of density and TT. We use this free energy data, along with the concept of ``inherent structures'' of the PES, to evaluate the absolute configurational entropy ScS_c of the liquid. We find that the temperature dependence of the diffusion coefficient and of ScS_c are consistent with the prediction of Adam and Gibbs, including in the region where we observe the FSC to occur. We find that the FSC is related to a change in the properties of the PES explored by the liquid, specifically an inflection in the TT dependence of the average inherent structure energy. In addition, we find that the high TT behavior of ScS_c suggests that the liquid entropy might approach zero at finite TT, behavior associated with the so-called Kauzmann paradox. However, we find that the change in the PES that underlies the FSC is associated with a change in the TT dependence of ScS_c that elucidates how the Kauzmann paradox is avoided in this system. Finally, we also explore the relation of the observed PES changes to the recently discussed possibility that BKS silica exhibits a liquid-liquid phase transition, a behavior that has been proposed to underlie the observed polyamorphism of amorphous solid silica.Comment: 14 pages, 18 figure

    Estimating the horizontal and vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea

    Get PDF
    Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3282, doi:10.1121/1.4818843.Conventional and adaptive plane-wave beamforming with simultaneous recordings by large-aperture horizontal and vertical line arrays during the 2009 Philippine Sea Engineering Test (PhilSea09) reveal the rate of occurrence and the two-dimensional arrival structure of seismic phases that couple into the deep ocean. A ship-deployed, controlled acoustic source was used to evaluate performance of the horizontal array for a range of beamformer adaptiveness levels. Ninety T-phases from unique azimuths were recorded between Yeardays 107 to 119. T-phase azimuth and S-minus-P-phase time-of-arrival range estimates were validated using United States Geological Survey seismic monitoring network data. Analysis of phases from a seismic event that occurred on Yearday 112 near the east coast of Taiwan approximately 450 km from the arrays revealed a 22° clockwise evolution of T-phase azimuth over 90 s. Two hypotheses to explain such evolution—body wave excitation of multiple sources or in-water scattering—are presented based on T-phase origin sites at the intersection of azimuthal great circle paths and ridge/coastal bathymetry. Propagation timing between the source, scattering region, and array position suggests the mechanism behind the evolution involved scattering of the T-phase from the Ryukyu Ridge and a T-phase formation/scattering location estimation error of approximately 3.2 km.This research is supported by the Office of Naval Research, both the Applied Research Laboratory program and Code 322(OA)

    Corticosteroid tapering with benralizumab treatment for eosinophilic asthma: PONENTE Trial.

    Get PDF
    Benralizumab is an interleukin-5 receptor α-directed cytolytic monoclonal antibody approved in several countries for the add-on maintenance treatment of patients with severe eosinophilic asthma aged 12 years and older. In the 28-week Phase III ZONDA trial (ClinicalTrials.gov identifier: NCT02075255), benralizumab produced a median 75% reduction from baseline in oral corticosteroid (OCS) dosage (versus 25% for placebo) while maintaining asthma control for patients with OCS-dependent severe asthma. This manuscript presents the detailed protocol for the Phase IIIb PONENTE (ClinicalTrials.gov identifier: NCT03557307), a study that will build on the findings from ZONDA. As the largest steroid-sparing study undertaken in severe asthma, PONENTE has a faster steroid tapering schedule for prednisone dosages ≥7.5 mg·day-1 than previous studies, and it includes an evaluation of adrenal insufficiency and an algorithm to taper OCS dosage when prednisone dosage is ≤5 mg·day-1. It also has a longer maintenance phase to assess asthma control for up to 6 months after completion of OCS tapering. The two primary endpoints are whether patients achieve 100% reduction in daily OCS use and whether patients achieve 100% reduction in daily OCS or achieve OCS dosage ≤5 mg·day-1, if adrenal insufficiency prevented further reduction, both sustained over ≥4 weeks without worsening of asthma. Safety and change from baseline in health-related quality of life will also be assessed. PONENTE should provide valuable guidance for clinicians on tapering OCS dosage, including the management of adrenal insufficiency, following benralizumab initiation for the treatment of patients who are OCS-dependent with severe, uncontrolled eosinophilic asthma

    Obesity dysregulates the pulmonary antiviral immune response

    Get PDF
    Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals

    Long-term efficacy and safety of osilodrostat in patients with Cushing’s disease: results from the LINC 4 study extension

    Get PDF
    ObjectiveTo evaluate the long-term efficacy and safety of osilodrostat in patients with Cushing’s disease.MethodsThe multicenter, 48-week, Phase III LINC 4 clinical trial had an optional extension period that was initially intended to continue to week 96. Patients could continue in the extension until a managed-access program or alternative treatment became available locally, or until a protocol amendment was approved at their site that specified that patients should come for an end-of-treatment visit within 4 weeks or by week 96, whichever occurred first. Study outcomes assessed in the extension included: mean urinary free cortisol (mUFC) response rates; changes in mUFC, serum cortisol and late-night salivary cortisol (LNSC); changes in cardiovascular and metabolic-related parameters; blood pressure, waist circumference and weight; changes in physical manifestations of Cushing’s disease; changes in patient-reported outcomes for health-related quality of life; changes in tumor volume; and adverse events. Results were analyzed descriptively; no formal statistical testing was performed.ResultsOf 60 patients who entered, 53 completed the extension, with 29 patients receiving osilodrostat for more than 96 weeks (median osilodrostat duration: 87.1 weeks). The proportion of patients with normalized mUFC observed in the core period was maintained throughout the extension. At their end-of-trial visit, 72.4% of patients had achieved normal mUFC. Substantial reductions in serum cortisol and LNSC were also observed. Improvements in most cardiovascular and metabolic-related parameters, as well as physical manifestations of Cushing’s disease, observed in the core period were maintained or continued to improve in the extension. Osilodrostat was generally well tolerated; the safety profile was consistent with previous reports.ConclusionOsilodrostat provided long-term control of cortisol secretion that was associated with sustained improvements in clinical signs and physical manifestations of hypercortisolism. Osilodrostat is an effective long-term treatment for patients with Cushing’s disease.Clinical trial registrationClinicalTrials.gov, identifier NCT0218021

    Potential severe asthma hidden in UK primary care

    Get PDF
    Funding: ISAR is conducted by Observational & Pragmatic Research Institution (OPRI), and co-funded by OPC Global and AstraZeneca. This research study was co-funded by AstraZeneca and Optimum Patient Care Global Limited, including access to the Optimum Patient Care Research Database (OPCRD).Peer reviewedPublisher PD

    Vitamin D Status and Bone and Connective Tissue Turnover in Brown Bears (Ursus arctos) during Hibernation and the Active State

    Get PDF
    BACKGROUND: Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for prevention of osteoporosis. AIM: To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state in winter and during the active state in summer. We measured vitamin D subtypes (D₂ and D₃), calcitropic hormones (parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)₂D]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP. MATERIAL AND METHODS: We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June. RESULTS: Serum 25-hydroxy-cholecalciferol (25OHD₃) was significantly higher in the summer than in the winter (22.8±4.6 vs. 8.8±2.1 nmol/l, two tailed p-2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD₂) was higher in winter (54.2±8.3 vs. 18.7±1.7 nmol/l, 2p<0.01). Total serum calcium and PTH levels did not differ between winter and summer. Activated 1,25(OH)₂D demonstrated a statistically insignificant trend towards higher summer levels. Osteocalcin levels were higher in summer than winter, whereas other markers of bone turnover (ICTP and CTX-I) were unchanged. Serum PIIINP, which is a marker of connective tissue and to some degree muscle turnover, was significantly higher during summer than during winter. CONCLUSIONS: Dramatic changes were documented in the vitamin D₃/D₂ ratio and in markers of bone and connective tissue turnover in brown bears between hibernation and the active state. Because hibernating brown bears do not develop disuse osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this disease

    Entropic Forces Drive Clustering and Spatial Localization of Influenza A M2 During Viral Budding

    Get PDF
    The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will in principle be able to both contribute to curvature induction and sense curvature in order to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered/liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced
    corecore