20 research outputs found

    Large Area Scene Selection Interface (LASSI). Methodology of Selecting Landsat Imagery for the Global Land Survey 2005

    Get PDF
    The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004-2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat 7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005

    Building capacity in remote sensing for conservation: present and future challenges

    Get PDF
    Remote sensing (RS) has made significant contributions to conservation and ecology; however, direct use of RS-based information for conservation decision making is currently very limited. In this paper, we discuss the reasons and challenges associated with using RS technology by conservationists and suggest how training in RS for conservationists can be improved. We present the results from a survey organized by the Conservation Remote Sensing Network to understand the RS expertise and training needs of various categories of professionals involved in conservation research and implementation. The results of the survey highlight the main gaps and priorities in the current RS data and technology among conservation practitioners from academia, institutions, NGOs and industry. We suggest training to be focused around conservation questions that can be addressed using RS-derived information rather than training pure RS methods which are beyond the interest of conservation practitioners. We highlight the importance of developing essential biodiversity variables (EBVs) and how this can be achieved by increasing the RS capacity of the conservation community. Moreover, we suggest that open-source software is adopted more widely in the training modules to facilitate access to RS data and products in developing countries, and that online platforms providing mapping tools should also be more widely distributed. We believe that improved RS capacity among conservation scientists will be essential to improve conservation efforts on the ground and will make the conservation community a key player in the definition of future RS-based products that serve conservation and ecological needs

    Effect of treatment of clinical seizures vs electrographic seizures in full-term and near-term neonates : a randomized clinical trial

    Get PDF
    Importance: Seizures in the neonatal period are associated with increased mortality and morbidity. Bedside amplitude-integrated electroencephalography (aEEG) has facilitated the detection of electrographic seizures; however, whether these seizures should be treated remains uncertain. Objective: To determine if the active management of electrographic and clinical seizures in encephalopathic term or near-term neonates improves survival free of severe disability at 2 years of age compared with only treating clinically detected seizures. Design, Setting, and Participants: This randomized clinical trial was conducted in tertiary newborn intensive care units recruited from 2012 to 2016 and followed up until 2 years of age. Participants included neonates with encephalopathy at 35 weeks’ gestation or more and younger than 48 hours old. Data analysis was completed in April 2021. Interventions: Randomization was to an electrographic seizure group (ESG) in which seizures detected on aEEG were treated in addition to clinical seizures or a clinical seizure group (CSG) in which only seizures detected clinically were treated. Main Outcomes and Measures: Primary outcome was death or severe disability at 2 years, defined as scores in any developmental domain more than 2 SD below the Australian mean assessed with Bayley Scales of Neonate and Toddler Development, 3rd ed (BSID-III), or the presence of cerebral palsy, blindness, or deafness. Secondary outcomes included magnetic resonance imaging brain injury score at 5 to 14 days, time to full suck feeds, and individual domain scores on BSID-III at 2 years. Results: Of 212 randomized neonates, the mean (SD) gestational age was 39.2 (1.7) weeks and 122 (58%) were male; 152 (72%) had moderate to severe hypoxic-ischemic encephalopathy (HIE) and 147 (84%) had electrographic seizures. A total of 86 neonates were included in the ESG group and 86 were included in the CSG group. Ten of 86 (9%) neonates in the ESG and 4 of 86 (4%) in the CSG died before the 2-year assessment. The odds of the primary outcome were not significantly different in the ESG group compared with the CSG group (ESG, 38 of 86 [44%] vs CSG, 27 of 86 [31%]; odds ratio [OR], 1.83; 95% CI, 0.96 to 3.49; P = .14). There was also no significant difference in those with HIE (OR, 1.77; 95% CI, 0.84 to 3.73; P = .26). There was evidence that cognitive outcomes were worse in the ESG (mean [SD] scores, ESG: 97.4 [17.7] vs CSG: 103.8 [17.3]; mean difference, −6.5 [95% CI, −1.2 to −11.8]; P = .01). There was little evidence of a difference in secondary outcomes, including time to suck feeds, seizure burden, or brain injury score. Conclusions and Relevance: Treating electrographic and clinical seizures with currently used anticonvulsants did not significantly reduce the rate of death or disability at 2 years in a heterogeneous group of neonates with seizures

    Land Cover Trends Dataset, 1973–2000

    Get PDF
    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Landsat mapping of local landscape change: The satellite-era context

    No full text
    Introduction: To set the stage for a vulnerability analysis, investigators must describe and understand the geographic context, including physical characteristics of the landscape and the political and socioeconomic milieu of the population (Jianchu et al. 2005). Vulnerability studies focus on a particular place, at a specific time through its three dimensions, exposure, sensitivity, and adaptive capacity; therefore, understanding place is essential to analyzing vulnerability. Land-use studies are essential to understanding place because they generalize human activities on the physical landscape. Essentially, land use indicates past human decisions and actions, environmental constraints, and, in some cases, gives insight into subsequent change. Like vulnerability, land use is particular to a place at a certain time, and the analysis of that land use can be used as a baseline for future change and its implications. Vulnerability and land use are linked by the concept of place and are fundamental to contemporary research on human-environment interactions. Although the literature on land use, land-use change, and climate change is extensive, the land-use component of vulnerability is usually conceptualized as a feedback mechanism to climate change: Forest cutting releases carbon dioxide, which increases atmospheric carbon dioxide concentrations, which increases radiative forcing, which changes climate, and which ultimately changes land cover and subsequent land use (e.g. DeFries and Bounoua 2004; Jianchu et al. 2005; Salinger et al. 2005; Watson 2005). Moreover, land use is rarely specifically identified as a component of vulnerability

    Building capacity in remote sensing for conservation: present and future challenges

    No full text
    Remote sensing (RS) has made significant contributions to conservation and ecology; however, direct use of RS-based information for conservation decision making is currently very limited. In this paper, we discuss the reasons and challenges associated with using RS technology by conservationists and suggest how training in RS for conservationists can be improved. We present the results from a survey organized by the Conservation Remote Sensing Network to understand the RS expertise and training needs of various categories of professionals involved in conservation research and implementation. The results of the survey highlight the main gaps and priorities in the current RS data and technology among conservation practitioners from academia, institutions, NGOs and industry. We suggest training to be focused around conservation questions that can be addressed using RS-derived information rather than training pure RS methods which are beyond the interest of conservation practitioners. We highlight the importance of developing essential biodiversity variables (EBVs) and how this can be achieved by increasing the RS capacity of the conservation community. Moreover, we suggest that open-source software is adopted more widely in the training modules to facilitate access to RS data and products in developing countries, and that online platforms providing mapping tools should also be more widely distributed. We believe that improved RS capacity among conservation scientists will be essential to improve conservation efforts on the ground and will make the conservation community a key player in the definition of future RS-based products that serve conservation and ecological needs

    Trusted Sources of COVID-19 Vaccine Information among Hesitant Adopters in the United States

    No full text
    The World Health Organization has identified vaccine hesitancy as a top health concern. Emerging research shows that those who are hesitant may still get vaccinated; however, little is known about those who say they are hesitant but still get vaccinated. Most people have high trust in several sources of COVID-19 information, and trust in certain information sources such as the Centers for Disease Control and Prevention and health care providers was associated with being vaccinated. This study explored trusted information sources among hesitant adopters in the United States with a survey respondents completed while waiting after receiving a COVID-19 vaccine dose. The study included (n = 867) respondents. The majority of respondents were female (60.21%); were between the ages of 18 and 44 years old (71.97%); and were diverse, with most identifying as White (44.54%) or Hispanic/Latinx (32.55%). Hesitant adopters reported multiple trusted sources of COVID-19 vaccine information, which can be grouped into four emergent subthemes: (1) Health care/Medical science, (2) Personal relationships, (3) News and social media, and (4) Individual/Myself. Some respondents expressed a distrust of all sources of COVID-19 vaccine information, despite receiving the vaccine, describing a lack of trust in traditional sources of information such as the mainstream media or government. This study contributes to the literature by documenting trusted sources of COVID-19 vaccine information among hesitant adopters in the United States. Findings provide important insights about respondents’ trusted sources of COVID-19 vaccine information that can inform future public health messaging campaigns intended to increase vaccine uptake among hesitant adopters
    corecore