139 research outputs found

    Antioxidant and anti-inflammatory effects of rhamnazin on lipopolysaccharide-induced acute lung injury and inflammation in rats

    Get PDF
    Background: Acute Lung Injury (ALI) results into severe inflammation and oxidative stress to the pulmonary tissue. Rhamnazin is a natural flavonoid and known for its antioxidant and anti-inflammatory properties.Materials and methods: The antioxidative and anti-inflammatory properties rhamnazin were tested for protection against the acute lung injury. We investigated whether rhamnazin improves the lipopolysaccharide (LPS)-induced ALI in an animal model (rat). We also studied the probable molecular mechanism of action of rhamnazin. Rhamnazin was injected intraperitoneally (i.p.) (5, 10 and 20 mg/kg) two days before intratracheal LPS challenge (5mg/kg). The changes in lung wet-to-dry weight ratio, LDH activity, pulmonary histopathology, BALF protein concentration, MPO activity, oxidative stress, cytokine production were estimated.Results: The results showed a significant attenuation of all the inflammatory parameters and a marked improvement in the pulmonary histopathology in the animal groups pretreated with rhamnazin. The rhamnazin pretreated group also showed activation of Nrf2 pathway and attenuation of ROS such as H2O2, MDA and hydroxyl ion. These results indicated that rhamnazin could attenuate the symptoms of ALI in rats due to its strong antioxidant and anti-inflammatory properties.Conclusion: The results strongly demonstrated that rhamnazin provides protection against LPS-induced ALI. The underlying mechanisms of its anti-inflammatory action may include inhibition of Nrf2 mediated antioxidative pathway.Keywords: acute lung injury, inflammation, cytokine, BALF, flavonoi

    ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF RHAMNAZIN ON LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY AND INFLAMMATION IN RATS

    Get PDF
    Background: Acute Lung Injury (ALI) results into severe inflammation and oxidative stress to the pulmonary tissue. Rhamnazin is a natural flavonoid and known for its antioxidant and anti-inflammatory properties. Materials and methods: The antioxidative and anti-inflammatory properties rhamnazin were tested for protection against the acute lung injury. We investigated whether rhamnazin improves the lipopolysaccharide (LPS)-induced ALI in an animal model (rat). We also studied the probable molecular mechanism of action of rhamnazin. Rhamnazin was injected intraperitoneally (i.p.) (5, 10 and 20 mg/kg) two days before intratracheal LPS challenge (5mg/kg). The changes in lung wet-to-dry weight ratio, LDH activity, pulmonary histopathology, BALF protein concentration, MPO activity, oxidative stress, cytokine production were estimated. Results: The results showed a significant attenuation of all the inflammatory parameters and a marked improvement in the pulmonary histopathology in the animal groups pretreated with rhamnazin. The rhamnazin pretreated group also showed activation of Nrf2 pathway and attenuation of ROS such as H2O2, MDA and hydroxyl ion. These results indicated that rhamnazin could attenuate the symptoms of ALI in rats due to its strong antioxidant and anti-inflammatory properties. Conclusion: The results strongly demonstrated that rhamnazin provides protection against LPS-induced ALI. The underlying mechanisms of its anti-inflammatory action may include inhibition of Nrf2 mediated antioxidative pathway

    Linear n-widths of diagonal matrices in the average and probabilistic settings

    Get PDF
    AbstractExact values of the average linear n-widths with respect to the standard Gaussian measure on Rm are determined for diagonal matrices, and are applied to deduce several new results on linear n-widths in the average and probabilistic settings, including the sharp upper and lower estimates of the linear (n,δ)-widths of diagonal matrices

    A multi-standard active-RC filter with accurate tuning system

    No full text
    A low-power, highly linear, multi-standard, active-RC filter with an accurate and novel tuning architec-ture is presented. It exhibits 1EEE 802. 11a/b/g (9.5 MHz) and DVB-H (3 MHz, 4 MHz) application. The filter exploits digitally-controlled polysilicon resistor banks and a phase lock loop type automatic tuning system. The novel and complex automatic frequency calibration scheme provides better than 4 comer frequency accuracy, and it can be powered down after calibration to save power and avoid digital signal interference. The filter achieves OIP3 of 26 dBm and the measured group delay variation of the receiver filter is 50 ns (WLAN mode). Its dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from a 2.85 V supply. The dissipation of calibration consumes 2 mA. The circuit has been fabricated in a 0.35μm 47 GHz SiGe BiCMOS technology; the receiver and transmitter filter occupy 0.21 mm~2 and 0.11 mm~2 (calibration circuit excluded), respectively
    corecore