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Abstract

Exact values of the average linear n-widths with respect to the standard Gaussian measure on R
m are

determined for diagonal matrices, and are applied to deduce several new results on linear n-widths in the
average and probabilistic settings, including the sharp upper and lower estimates of the linear (n, δ)-widths
of diagonal matrices.
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1. Introduction

Let �m
q denote the m-dimensional normed linear space of vectors x = (x1, . . . , xm) ∈R

m with
norm

‖x‖q ≡ ‖x‖�m
q

:=
{

(
∑m

i=1 |xi |q)
1
q , 1 � q < ∞,

max1�i�m |xi |, q = ∞,
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and let Bm
q := {x ∈ R

m: ‖x‖q � 1} denote the unit ball of �m
q . As usual, we identify R

m with
the space �m

2 , and use the notation 〈x, y〉 to denote the Euclidean inner product of x, y ∈ R
m.

Let Sm−1 := {x ∈ R
m: ‖x‖2 = 1} denote the unit sphere of Rm equipped with the usual rotation

invariant measure dσm(x) normalized by
∫
Sm−1 dσm(x) = 1. Given 1 � q � ∞, the classic linear

n-width of a linear operator T : �m
2 → �m

q is defined by

λn

(
T : �m

2 → �m
q

) := inf
Tn

sup
x∈Sm−1

‖T x − Tnx‖q, (1.1)

with the infimum being taken over all linear operators Tn : �m
2 → �m

q with rank � n. In this paper,
we shall discuss the average linear n-widths, and the probabilistic linear (n, δ)-widths, whose
definitions will be given below.

Let γm denote the standard Gaussian measure on R
m given by

γm(G) = (2π)−m/2
∫
G

exp
(−‖x‖2

2/2
)
dx, for each Borel subset G ⊂ R

m.

For 0 � n � m, 0 < p < ∞ and 1 � q � ∞, the p-average linear n-width of a linear operator
T :Rm → �m

q is defined by

λ(a)
n

(
T : Rm → �m

q , γm

)
p

:= inf
Tn

( ∫
Rm

‖T x − Tnx‖p
q dγm(x)

)1/p

,

where the infimum is taken over all linear mappings Tn : Rm → �m
q with rank � n. Equivalently,

the p-average linear n-width λ
(a)
n (T : Rm → �m

q , γm)p can be expressed as

λ(a)
n

(
T : Rm → �m

q , γm

)
p

:= inf
Tn

(
E‖T X − TnX‖p

�m
q

) 1
p ,

where X ∼ Nm(0, Im)Rm is an R
m-valued Gaussian random vector with mean 0 and covariance

matrix Im, the m by m identity matrix.
A connection between the p-average linear n-width λ

(a)
n (T : Rm → �m

q , γm)p and the classic
linear n-width λn(T : �m

2 → �m
q ) can be seen as follows:

λ(a)
n

(
T :Rm → �m

q , γm

)
p

= c(m,p) inf
Tn

( ∫
Sm−1

‖T x − Tnx‖p

�m
q

dσm(x)

) 1
p

(1.2)

� c(m,p)λn

(
T : �m

2 → �m
q

)
, (1.3)

where c(m,p) = √
2(

Γ (
m+p

2 )

Γ ( m
2 )

)
1
p  √

m, and the constant of equivalence is independent of m.

Here A  B means that there exists a constant C > 0, which is called the constant of equivalence,
such that C−1 � A/B � C. Indeed, (1.2) can be verified by straightforward calculations, whereas
(1.3) follows directly from (1.1). It turns out that in many cases, the quantity
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inf
Tn

( ∫
Sm−1

‖T x − Tnx‖p

�m
q

dσm(x)

) 1
p

is significantly smaller than the linear n-width

λn

(
T : �m

2 → �m
q

) := inf
Tn

sup
x∈Sm−1

‖T x − Tnx‖�m
q
.

(See, for instance, [4,3,8].) Results on classic linear widths can be found in the references [5,9]
on widths, whereas known results on average linear widths can be found in [4,8,3,11].

For δ ∈ (0,1) and 1 � q � ∞, the probabilistic linear (n, δ)-width of a linear mapping T :
R

m → �m
q is defined by

λn,δ

(
T : Rm → �m

q , γm

) = inf
Gδ

inf
Tn

sup
x∈Rm\Gδ

‖T x − Tnx‖q, 1 � n � m,

where the first infimum is taken over all Borel subsets of Rm with γm(Gδ) � δ, and the second
infimum is taken over all linear operators Tn : Rm → �m

q with rank � n. Thus,

λn,δ

(
T : Rm → �m

q , γm

)
< λ

if and only if there exists a linear operator Tn : Rm → �m
q with rank � n such that with probability

� 1 − δ, one has

‖T X − TnX‖q < λ,

where X ∼ Nm(0, Im)Rm . For more information on the probabilistic linear widths and their con-
nections to the average linear widths, we refer to [3,4,6–8] and the references therein.

The main purpose in this paper is to study the average linear n-widths and the probabilistic
linear (n, δ)-widths for diagonal operators. Throughout the paper, we use the letter D to denote
an m × m real diagonal matrix diag(d1, . . . , dm) with d1 � d2 � · · · � dm > 0, and the letter Dn

to denote the diagonal matrix diag(d1, . . . , dn,0, . . . ,0) for 1 � n � m. Moreover, {e1, . . . , em}
denotes the standard orthonormal basis in R

m:

e1 = (1,0, . . . ,0), . . . , em = (0, . . . ,0,1).

In Section 2, we determine the exact values of the average linear n-widths λ
(a)
n (D : Rm →

�m
q , γm)q for all 1 � q < ∞. Our result is new even in the case of the identity operator, where we

prove that for 1 � q < ∞, and 1 � n � m,

λ(a)
n

(
Im :Rm → �m

q , γm

)
q

= C(q)m1/q(1 − n/m)max(1/q,1/2), (1.4)

with

C(q) =
(

π− 1
2 2

q
2 Γ

(
q + 1

))1/q

. (1.5)

2
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As corollaries, we also deduce sharp upper and lower estimates of the average linear n-widths
λ

(a)
n (D : Rm → �m

q , γm)p for all 1 � q < ∞ and 0 < p < ∞ in Section 2. Section 3 is devoted

to the sharp estimates of the average linear n-width λ
(a)
n (Im : Rm → �m∞, γm)p for 0 < p < ∞.

Finally, in Section 4, using our result on average linear n-widths, we obtain the sharp upper and
lower estimates of the probabilistic linear (n, δ)-widths λn,δ(D : Rm → �m

q , γm) for 1 � q � 2,
which improves previously known results even in the case of the identity matrix.

2. Exact values of the average linear n-widths of diagonal matrices

2.1. Main results and corollaries

For the classic linear n-widths, the following exact values are known in the case of 0 � n < m

and 1 � q � 2:

λn

(
D : �m

2 → �m
q

) = sup
x∈Sm−1

‖Dx − Dnx‖q =
(

m∑
k=n+1

dr
k

)1/r

, (2.1)

where 1/r = 1/q − 1/2 (see [9, Theorem 2.2]). For the case of 2 < q < ∞, the exact value of
λn(D : �m

2 → �m
q ) remains unknown.

In this section, we shall determine exact values of the average linear n-widths λ
(a)
n (D :Rm →

�m
q , γm)q for all 1 � q < ∞.

Theorem 2.1. Let C(q) be given in (1.5).

(i) If 1 � q � 2 and 1 � n �m, then

λ(a)
n

(
D :Rm → �m

q , γm

)
q

= C(q)

(
m∑

k=n+1

d
q
k

) 1
q

. (2.2)

Moreover, Dn is the optimal linear operator for the average linear n-widths λ
(a)
n (Im :Rm →

�m
q , γm)q for all 1 � q � 2 in the sense that

λ(a)
n

(
D :Rm → �m

q , γm

)
q

=
( ∫
Rm

‖Dx − Dnx‖q

�m
q

dγm(x)

)1/q

.

(ii) If 2 < q < ∞ and 1 � n � m, then

λ(a)
n

(
D : Rm → �m

q , γm

)
q

= C(q)

[
(κ − n)

q
2

(
κ∑

dr
j

)1− q
2

+
m∑

d
q
j

] 1
q

, (2.3)

j=1 j=κ+1
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where 1
r

= 1
q

− 1
2 , and κ = κ(m,n, q,D) is the biggest integer in [n + 1,m] such that

(κ − n)dr
κ �

κ∑
j=1

dr
j .

According to [12, Corollary 1],

λ(a)
n

(
D : Rm → �m

q , γm

)
p

 λ(a)
n

(
D :Rm → �m

q , γm

)
q

for all 1 � q � ∞ and 0 < p < ∞, where the constants of equivalence depend only on p and q .
Thus, Theorem 2.1 also gives the sharp asymptotic orders of λ

(a)
n (D : Rm → �m

q , γm)p for all
1 � q < ∞ and 0 < p < ∞:

Corollary 2.2. Let Jm,n(D)q denote the expression on the right-hand side of (2.2) and (2.3) for
1 � q � 2 and 2 < q < ∞ respectively. Then for all 0 < p < ∞ and 1 � q < ∞,

λ(a)
n

(
D : Rm → �m

q , γm

)
p

 Jm,n(D)q, 1 � n �m. (2.4)

We point out that the sharp estimates (2.4) for 2 � q < ∞ were previously obtained in [3]
under the additional assumptions that

m � 2n and m−1
m∑

j=n+2

d

2q
2−q

j � d

2q
2−q

n+1 . (2.5)

It is worthwhile to mention that Theorem 2.1 and Corollary 2.2 are new even in the case of
the identity matrix Im, where our results can be stated more explicitly as follows:

Corollary 2.3. If 1 � q < ∞, and 1 � n � m, then

λ(a)
n

(
Im :Rm → �m

q , γm

)
q

= C(q)m1/q(1 − n/m)max(1/q,1/2), (2.6)

and

λ(a)
n

(
Im :Rm → �m

q , γm

)
p

 m1/q(1 − n/m)max(1/q,1/2), 0 < p < ∞, (2.7)

where the constant of equivalence depends only on p and q .

The following sharp estimate

λ(a)
n

(
Im : Rm → �m

q , γm

)
p

 m1/q, 1 � q < ∞, 0 < p < ∞

was previously obtained in [4] under the additional assumption that m� 2n. Our result (2.7) here
applies to the full range of 1 � n �m.
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2.2. Proof of Theorem 2.1

For the proof of Theorem 2.1, we need a series of lemmas.

Lemma 2.4. (See [9, Lemma 2.8, pp. 207–208].) If n is a nonnegative integer � m, and
(ξ1, . . . , ξm) ∈ [0,1]m satisfies

∑m
k=1 ξk = n, then there exists an n-dimensional linear subspace

V of Rm such that ξj = ‖PV ej‖2
2 for all 1 � j �m, where PV :Rm → V denotes the orthogonal

projection onto V .

Lemma 2.5. If T : Rm → �m
q is an arbitrary linear mapping with 1 � q < ∞, then

( ∫
Rm

‖Dx − T x‖q
q dγm(x)

) 1
q = C(q)

(
m∑

i=1

∥∥diei − T ∗ei

∥∥q

2

)1/q

, (2.8)

where T ∗ denotes the conjugate operator of T : Rm → �m
q , and C(q) is given in (1.5). In partic-

ular, if T = Dn with 1 � n < m, then

( ∫
Rm

‖Dx − Dnx‖q
q dγm(x)

)1/q

= C(q)

(
m∑

k=n+1

d
q
k

)1/q

. (2.9)

Proof. Letting X ∼ Nm(0, Im)Rm , we have

∫
Rm

‖Dx − T x‖q
q dγm(x) = E‖DX − T X‖q

q = E

(
m∑

j=1

∣∣〈DX − T X,ej 〉
∣∣q)

=
m∑

j=1

E
∣∣〈X,Dej − T ∗ej

〉∣∣q =
m∑

j=1

E
∣∣〈X,dj ej − T ∗ej

〉∣∣q . (2.10)

Since 〈X,dj ej − T ∗ej 〉 = ‖dj ej − T ∗ej‖2ηj with ηj ∼ N(0,1)R1 , it follows that

m∑
j=1

E
∣∣〈X,dj ej − T ∗ej

〉∣∣q =
m∑

j=1

∥∥dj ej − T ∗ej

∥∥q

2E|ηj |q

= C(q)q
m∑

j=1

∥∥dj ej − T ∗ej

∥∥q

2 , (2.11)

where

C(q)q = (2π)−
1
2

∫
R

|t |qe−t2/2 dt =
(

π− 1
2 2

q
2 Γ

(
q + 1

2

))1/q

.

A combination of (2.10) and (2.11) yields (2.8).
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Finally, to complete the proof, we note that (2.9) follows directly from (2.8) since D∗
nej =

Dnej = dj ej for 1 � j � n, and D∗
nej = Dnej = 0 for n < j � m. �

Lemma 2.6. If 1 � q < ∞, then

λ(a)
n

(
D : Rm → �m

q , γm

)
q

= C(q)Iq(m,n), (2.12)

where Iq(m,n) is defined by

Iq(m,n) := min

{(
m∑

i=1

d
q
i x

q/2
i

) 1
q

: (x1, . . . , xm) ∈ [0,1]m and
m∑

i=1

xi = m − n

}
. (2.13)

Proof. We start with the proof of the lower estimate λ
(a)
n (T : Rm → �m

q , γm)q � C(q)Iq(m,n).
To this end, let Tn :Rm → R

m be an arbitrary linear operator with rank � n, and let V = T ∗
n (Rm)

be the range of the conjugate operator T ∗
n . Then dimV � n, and

m∑
j=1

∥∥dj ej − T ∗
n ej

∥∥q

2 �
m∑

j=1

d
q
j min

y∈V
‖ej − y‖q

2 =
m∑

j=1

|dj |q‖PV ⊥ej‖q

2 , (2.14)

where PV ⊥ denotes the orthogonal projection onto the orthogonal complement V ⊥ of V in R
m.

Let

xj = (m − n)‖PV ⊥ej‖2
2

(
m∑

i=1

‖PV ⊥ei‖2
2

)−1

, for 1 � j � m.

Clearly,
∑m

j=1 xj = m − n. Since

m∑
i=1

‖PV ⊥ei‖2
2 =

m∑
i=1

〈PV ⊥ei, ei〉 = trace (PV ⊥) �m − n,

it follows that 0 � xi � ‖PV ⊥ei‖2
2 � 1 for each 1 � i � m. Thus, using (2.14), we deduce

m∑
j=1

∥∥dj ej − T ∗
n ej

∥∥q

2 �
m∑

j=1

|dj |qx
q/2
j � Iq(m,n)q,

which, together with (2.8), implies that

( ∫
Rm

|Dx − Tnx|q dγm(x)

) 1
q

� C(q)Iq(m,n).

Since Tn is an arbitrary linear operator with rank � n, the desired lower estimate follows.
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It remains to show the upper estimate λ
(a)
n (D : Rm → �m

q , γm)q � C(q)Iq(m,n). Let

(y1, . . . , ym) ∈ [0,1]m be the minimizer of
∑m

j=1 d
q
j x

q
2
j subject to the conditions (x1, . . . , xm) ∈

[0,1]m and
∑m

j=1 xj = m − n. Setting ξj = 1 − yj for 1 � j � m, we have ξj ∈ [0,1] and∑m
j=1 ξj = n. Hence, by Lemma 2.4, there exists a linear subspace V of Rm with dimV = n

and such that ξj = ‖PV ej‖2
2 for all 1 � j � m. Clearly, ‖ej − PV ej‖2

2 = ‖ej‖2
2 − ‖PV ej‖2

2 =
1 − ξj = yj . Thus, using Lemma 2.5, we have that

λ(a)
n

(
D :Rm → �m

q , γm

)q

q
�

∫
Rm

‖Dx − DPV x‖q
q dγm(x)

= C(q)q
m∑

j=1

∥∥D∗ej − P ∗
V D∗ej

∥∥q

2 = C(q)q
m∑

j=1

d
q
j ‖ej − PV ej‖q

2

= C(q)q
m∑

j=1

d
q
j y

q
2
j = C(q)qIq(m,n)q,

which gives the desired upper estimate, and hence completes the proof of Lemma 2.6. �
Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.6, it suffices to prove that

Iq(m,n)q =
{∑m

k=n+1 d
q
k , if 1 � q � 2,

(κ − n)
q
2 (

∑κ
j=1 dr

j )1− q
2 + ∑m

j=κ+1 d
q
j , if 2 < q < ∞,

(2.15)

where 1
r

= 1
q

− 1
2 , and κ = κ(m,n, q,D) is as defined in Theorem 2.1.

If 1 � q � 2, x1, . . . , xm ∈ [0,1] and
∑m

j=1 xj = m−n, then using the monotonicity of the dj ,

m∑
i=1

d
q
i x

q/2
i �

m∑
i=1

d
q
i xi � d

q
n

n∑
i=1

xi +
m∑

i=n+1

d
q
i − d

q
n

m∑
i=n+1

(1 − xi) =
m∑

i=n+1

d
q
i ,

where the equalities can be achieved whenever x1 = · · · = xn = 0 and xn+1 = · · · = xm = 1.
(2.15) for 1 � q � 2 then follows.

To prove (2.15) for 2 < q < ∞, we claim that

Iq(m,n)q := min

{
κ∑

j=1

d
q
j x

q
2
j +

m∑
j=κ+1

d
q
j : x1, . . . , xκ ∈ [0,1] and

κ∑
j=1

xj = κ − n

}
. (2.16)

For the moment, we take (2.16) for granted and proceed with the proof of (2.15). Using the
following reverse Hölder inequality

∑
|ajbj | �

(∑
|aj |p

) 1
p
(∑

|bj |
p

p−1

) p−1
p

, 0 < p < 1,
j j j
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and recalling 2
q

∈ (0,1), we deduce that

κ∑
j=1

d
q
j x

q
2
j �

(
κ∑

j=1

xj

) q
2
(

κ∑
j=1

d

2q
2−q

j

)1− q
2

= (κ − n)
q
2

(
κ∑

j=1

dr
j

)1− q
2

whenever x1, . . . , xκ ∈ [0,1] and
∑κ

j=1 xj = κ − n. This combined with the claim (2.16) yields
the desired lower estimate of (2.15) for 2 < q < ∞. To prove the desired upper estimate, let

zi = (κ − n)dr
i

(
κ∑

j=1

dr
j

)−1

, 1 � i � κ.

Since r = 2q
2−q

< 0 and d1 � · · · � dm > 0, we deduce from the definition of κ that 0 � zi �
zκ � 1 for all 1 � i � κ , and

∑κ
i=1 zi = κ − n. Thus, using (2.16), we obtain

Iq(m,n)q �
κ∑

j=1

d
q
j z

q
2
j +

m∑
j=κ+1

d
q
j = (κ − n)

q
2

(
κ∑

j=1

dr
j

)1− q
2

+
m∑

j=κ+1

d
q
j .

The desired upper estimate of (2.15) for 2 < q < ∞ then follows.
Now it remains to show the claim (2.16). Let (y1, . . . , ym) ∈ [0,1]m be the minimizer of∑m
j=1 d

q
j x

q
2
j subject to the conditions (x1, . . . , xm) ∈ [0,1]m and

∑m
j=1 xj = m − n. Note that∑m

j=1 d
q
j x

q
2
j �

∑m
j=1 d

q
j (x∗

j )
q
2 , where 0 � x∗

1 � · · · � x∗
m is a nondecreasing rearrangement of

x1, . . . , xm. Thus, without loss of generality, we may assume that 0 � y1 � · · ·� ym � 1. For the
proof of the claim (2.16), it suffices to show that yκ+1 = 1. To this end, let’s first observe that
y1 > 0. Indeed, if y1 = 0, then the function ϕ(t) = d

q

1 t
q
2 + d

q
m(ym − t)

q
2 , 0 � t � δ achieves its

minimum at t = 0, whenever δ > 0 is sufficiently small. However, this is impossible since q > 2
and ϕ′(t) = q

2 d
q

1 t
q
2 −1 − q

2 d
q
m(ym − t)

q
2 −1 < 0 for t > 0 being sufficiently small. Next, we show

that yκ+1 = 1. Assuming that yκ+1 < 1. We shall obtain a contradiction as follows. Let k0 be the
largest integer j such that κ + 1 � j � m and yj < 1. Then, clearly, (y1, . . . , yk0) is a minimizer

of
∑k0

j=1 d
q
j x

q
2
j subject to the conditions (x1, . . . , xk0) ∈ (0,1)k0 and

∑k0
j=1 xj = k0 − n. Thus,

applying the method of the Lagrange multipliers, we deduce

d
q

1 y
q
2 −1

1 = · · · = d
q
k0

y
q
2 −1
k0

, and
k0∑

j=1

yj = k0 − n,

which in turn implies

yk0 = (k0 − n)dr
k0

(
k0∑

j=1

dr
j

)−1

.

On the one hand, since yk ∈ [0,1], it follows that
0
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k0∑
j=1

dr
j � (k0 − n)dr

k0
. (2.17)

On the other hand, however, using the definition of κ , and the facts that r < 0 and d1 � · · · �
dm > 0, we deduce

k0∑
j=1

dr
j =

∑
1�j�κ+1

dr
j +

∑
κ+2�j�k0

dr
j < (κ + 1 − n)dr

κ+1 + (k0 − κ − 1)dr
k0

� (k0 − n)dr
k0

,

which contradicts (2.17), and hence completes the proof of Theorem 2.1. �
3. The average linear n-widths λ

(a)
n (Im :RRRm → �m∞, γm)p

Corollary 2.3 in the last section gives the sharp lower and upper estimates of λ
(a)
n (Im : Rm →

�m
q , γm)p for all 1 � q < ∞ and 0 < p < ∞. The remaining case q = ∞ is more difficult to deal

with. It was shown by Maiorov and Wasilkowski [8] that

λ(a)
n

(
Im : Rm → �m∞, γm

)
1  √

lnm, m� 2n. (3.1)

Our first result in this section gives a slightly better upper estimate of λ
(a)
n (Im : Rm → �m∞, γm)p

for the full range of 1 � n � m:

Theorem 3.1. If 0 < p < ∞, and 1 � n �m then

λ(a)
n

(
Im : Rm → �m∞, γm

)
p
� Cp min

(
(m − n)1/2, (lnm)1/2)(1 − n/m)1/2. (3.2)

Proof. It suffices to prove (3.2) with p = 1 by [12, Corollary 1]. By Lemma 2.4, there exists an
n-dimensional linear subspace V of Rm such that ‖PV ek‖2

2 = n
m

for all 1 � k � m, where PV ek

denotes the orthogonal projection of the kth unit vector ek ∈ R
m onto V . By Stirling’s formula

(see [1, p. 18]),

lim
x→+∞

Γ (x + 1)ex

√
2πxx+ 1

2

= 1,

we obtain

lim
q→+∞

C(q)

q1/2
= lim

q→+∞

(
q − 1

q

)1/2

2
1

2q exp

(
−q − 1

2q

)
= e−1/2.

From the proofs of Lemma 2.6 and Theorem 2.1, it follows that
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( ∫
Rm

‖x − PV x‖q
q dγm(x)

)1/q

= C(q)m1/q(1 − n/m)1/2

� Cq1/2m1/q(1 − n/m)1/2, 2 � q < ∞.

Thus, taking q = ln(e2m), we get

λ(a)
n

(
Im : Rm → �m∞, γm

)
1 �

∫
Rm

‖x − PV x‖∞ dγm(x)

�
( ∫
Rm

‖x − PV x‖q
q dγm(x)

)1/q

� C(lnm)1/2(1 − n/m)1/2. (3.3)

On the other hand, however, a direct computation shows

λ(a)
n

(
Im :Rm → �m∞, γm

)
1 �

∫
Rm

‖x − PV x‖∞ dγm(x)

=
∫
Rm

max
1�i�m

∣∣〈PV ⊥x, ei〉
∣∣dγm(x)

� max
1�i�m

‖PV ⊥ei‖2

∫
Rm

‖PV ⊥x‖2 dγm(x)

= (1 − n/m)1/2
∫

Rm−n

‖x‖2 dγm−n(x)

� C(m − n)1/2(1 − n/m)1/2, (3.4)

where PV ⊥ denotes the orthogonal projection onto the orthogonal complement V ⊥ of V in R
m,

and in the fourth step, we have used the rotation invariance of the Gaussian measure γm.
Thus, a combination of (3.3) and (3.4) yields the desired upper estimate of λ

(a)
n (Im : Rm →

�m∞, γm)1. �
It is still unclear whether or not the upper estimate (3.2) is sharp for the full range of 1 �

m � n. On the other hand, however, from (3.1) and our proofs of Theorem 2.1 and Corollary 3.1,
there exists an n-dimensional linear subspace V of Rm independent of q such that

λ(a)
n

(
Im :Rm → �m

q , γm

)
q

=
( ∫
Rm

‖x − PV x‖q
q dγm(x)

)1/q

, 2 � q < ∞

and
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λ(a)
n

(
Im : Rm → �m∞, γm

)
1 

∫
Rm

‖x − PV x‖∞ dγm(x), m� 2n, (3.5)

where PV : Rm → V denotes the orthogonal projection onto V . This means that PV is the si-
multaneous optimal linear operator and asymptotically optimal linear operator for the average
linear n-widths λ

(a)
n (Im : Rm → �m

q , γm)q and λ
(a)
n (Im : Rm → �m

q , γm)1 with 2 � q < ∞, and is

asymptotically optimal for λ
(a)
n (Im : Rm → �m∞, γm)1 when m � 2n. It remains unclear whether

the restriction m � 2n in (3.5) can be dropped. Nevertheless, as our next theorem shows, (3.5) is
true for some n-dimensional linear space V .

Theorem 3.2. For 1 � n � m and 0 < p < ∞, we have

λ(a)
n

(
Im : Rm → �m∞, γm

)p

p
= inf

V ⊂R
m

dimV =n

∫
Rm

‖x − PV x‖p∞ dγm(x). (3.6)

The proof of Theorem 3.2 relies on the following lemma, which is essentially contained in [2,
p. 29]:

Lemma 3.3. Let X and Y be two R
m-valued Gaussian random vectors with mean zero. If

E
∣∣〈x,X〉∣∣2 � E

∣∣〈x,Y 〉∣∣2
, ∀x ∈R

m, (3.7)

then for any 0 < p < ∞, and any semi-norm ϕ :Rm → [0,∞) on R
m,

Eϕ(X)p � Eϕ(Y )p.

Proof. By Theorem 1.8.9 of [2, p. 29], (3.7) is equivalent to the following condition: for every
convex symmetric subset A ⊂ R

m,

P(X ∈ A) � P(Y ∈ A). (3.8)

Given any semi-norm ϕ on R
m, and any t > 0, the set At := {x ∈ R

m: ϕ(x) � t} is symmetric
and convex. Thus, using (3.8),

P
(
ϕ(X) > t

) = 1 − P(X ∈ At) � 1 − P(Y ∈ At) = P
(
ϕ(Y ) > t

)
.

It then follows that

Eϕ(X)p = p

∞∫
0

tp−1
P
(
ϕ(X) > t

)
dt

� p

∞∫
tp−1

P
(
ϕ(Y ) > t

)
dt = Eϕ(Y )p. �
0
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Proof of Theorem 3.2. Let T :Rm → �m∞ be a linear mapping with rank n, and let V = T ∗(Rm)

denote the range of T ∗, the conjugate of T . Clearly, for the proof of Theorem 3.2, it is enough to
show that for Z ∼ Nm(0, Im)Rm ,

E‖Z − T Z‖p∞ � E‖Z − PV Z‖p∞.

Since Z − T Z and Z − PV Z are both centered Gaussian random vectors on R
m, using

Lemma 3.3, we reduce to showing that

E
∣∣〈x,Z − T Z〉∣∣2 � E

∣∣〈x,Z − PV Z〉∣∣2
, ∀x ∈R

m. (3.9)

To see this, we use the fact that 〈ξ,Z〉 ∼ N(0,1) whenever ξ ∈ S
m−1 and Z ∼ Nm(0, Im)Rm . We

then get, for any x ∈ R
m,

E
∣∣〈x,Z − T Z〉∣∣2 = E

∣∣〈x − T ∗x,Z
〉∣∣2 = ∥∥x − T ∗x

∥∥2
2 � ‖x − PV x‖2

2

= E
∣∣〈x,Z − PV Z〉∣∣2

. �
4. The probabilistic linear (n, δ)-widths

In this section, we shall consider the probabilistic linear (n, δ)-widths. Our main result is the
following:

Theorem 4.1. If 1 � q � 2, then there exists a constant δ0 ∈ (0,1/2] such that for all δ ∈ (0, δ0],

λn,δ

(
D : Rm → �m

q , γm

) 
(

m∑
k=n+1

d
q
k

)1/q

+ √
ln(1/δ)

(
m∑

k=n+1

dr
k

)1/r

, (4.1)

where 1
r

= 1
q

− 1
2 and the constants of equivalence depend only on q .

Theorem 4.1 gives a negative answer to a conjecture in [3, p. 339], where the authors proved
sharp upper and lower estimates of λn,δ(D : Rm → �m

q , γm) for 2 � q < ∞ under the additional
assumptions (2.5). In the case of the identity matrix Im, sharp estimates of λn,δ(Im : Rm →
�m
q , γm) were previously obtained in [7,8] for 2 � q � ∞, and in [4] for 1 � q � 2, under the

additional assumption m� 2n.
For the proof of Theorem 4.1, we need the following two known lemmas.

Lemma 4.2. (See [2, p. 2], [7].) If η ∼ N(0,1)R then for all t > 0

√
2π−1/2(t−1 − t−3)e−t2/2 � P

(|η| � t
)
�

√
2π−1/2t−1e−t2/2.

In particular, if δ ∈ (0, e−1] then P(|η| � c0
√

ln δ−1 ) > δ for some absolute constant c0 > 0.
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Lemma 4.3. (See [2, (1.7.7)], [10, p. 47].) Let F : Rm →R be a function satisfying the following
Lipschitz condition

∣∣F(x) − F(y)
∣∣ � σ‖x − y‖2, x, y ∈R

m,

for some σ > 0 independent of x and y. If X ∼ Nm(0, Im)Rm is an R
m-valued Gaussian random

vector with mean 0 and covariance matrix Im, then for all t > 0

P
(∣∣F(X) −EF(X)

∣∣ > t
)
� 2 exp

(
− t2

K2σ 2

)
, (4.2)

with K > 0 being an absolute constant.

(4.2) is called the Gaussian concentration inequality.
Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. We start with the proof of the upper estimates, which is simpler. Let
F(x) = ‖Dx − Dnx‖q for x ∈ R

m and 1 � q � 2. Recalling 1
r

+ 1
2 = 1

q
, we use Hölder’s in-

equality to obtain

∣∣F(x) − F(y)
∣∣ � ∥∥(D − Dn)(x − y)

∥∥
q

=
(

m∑
k=n+1

d
q
k |xk − yk|q

) 1
q

� σ1‖x − y‖2,

where σ1 := (
∑m

k=n+1 dr
k )1/r . Thus, the Gaussian concentration inequality (4.2) yields

P
(∣∣F(X) −EF(X)

∣∣ > t
)
� 2 exp

(
− t2

K2σ 2
1

)
, ∀t > 0,

where, here and in what follows, X ∼ Nm(0, Im)Rm . In particular, this implies that for Qδ = {x ∈
R

m: F(x) > EF(X) + Kσ1
√

ln(2/δ)} with δ ∈ (0,1),

γm(Qδ) � P
(∣∣F(X) −EF(X)

∣∣ > Kσ1
√

ln(2/δ)
)
� δ.

By the definition of the linear (n, δ)-widths, this last equation further implies that

λn,δ

(
D :Rm → �m

q , γm

)
� sup

Rm\Qδ

‖Dx − Dnx‖q � EF(X) + Kσ1
√

ln(2/δ). (4.3)

On the other hand, however, using (2.9), we have

EF(X) = E‖DX − DnX‖q  (
E‖DX − DnX‖q

q

)1/q = C(q)σ2, (4.4)

where σ2 := (
∑m

k=n+1 d
q
k )1/q . Thus, combining (4.3) with (4.4), we deduce the desired upper

estimate

λn,δ

(
D : Rm → �m

q , γm

)
� Cσ2 + Kσ1

√
ln(2/δ).
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To show the desired lower estimates, we need only to prove both

λn,δ

(
D : Rm → �m

q , γm

)
� cσ1

√
ln(2/δ), (4.5)

and

λn,δ

(
D :Rm → �m

q , γm

)
� cσ2, (4.6)

for some absolute constant c > 0.
For the proof of (4.5), it suffices to show that for any linear mapping Tn : Rm → �m

q with rank
� n,

P
(‖DX − TnX‖q � cσ1

√
ln(2/δ)

)
> δ, (4.7)

since (4.7) implies that the set {x ∈ R
m: ‖Dnx − Tnx‖q � cσ1

√
ln(2/δ)} cannot be entirely

contained in any Borel subset G ⊂ R
m with γm(G) � δ. Letting η ∼ N(0,1)R, we observe that

P
(‖DX − TnX‖q � cσ1

√
ln(2/δ)

) = P

(
sup

‖y‖q′�1

∣∣〈X,
(
D − T ∗

n

)
y
〉∣∣ � cσ1

√
ln(2/δ)

)

� sup
‖y‖q′�1

P
(∣∣〈X,

(
D − T ∗

n

)
y
〉∣∣� cσ1

√
ln(2/δ)

)

= sup
‖y‖q′�1

P

(
|η| � c

σ1
√

ln(2/δ)

‖(D − T ∗
n )y‖2

)

� P

(
|η| � c

σ1
√

ln(2/δ)

B

)
,

where

B := sup
‖y‖q′�1

∥∥(
D − T ∗

n

)
y
∥∥

2 = sup
‖y‖2�1

∥∥(D − Tn)y
∥∥

q
� λn

(
D : �m

2 → �m
q

) = σ1

with the last step using (2.1). It then follows by Lemma 4.2 that

P
(‖DX − TnX‖q � cσ1

√
ln(2/δ)

)
� P

(|η| � c
√

ln(2/δ)
)
> δ

with c = c0 being the same as in Lemma 4.2. This proves (4.7), and hence the lower estimate
(4.5).

Now it remains to prove the lower estimate (4.6). Again, it suffices to show that

P
(‖DX − TnX‖q � cσ2

)
> δ, (4.8)

where Tn : Rm → R
m is an arbitrary linear mapping with rank � n. Letting

e(D,Tn, γm, t) := inf
{
ρ > 0: P

(‖DX − TnX‖q > ρ
)
� t

}
, 0 � t � 1, (4.9)
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we reduce the proof of (4.8) to showing

e(D,Tn, γm, δ) > cσ2. (4.10)

Since the function t → e(D,Tn, γm, t) defined by (4.9) is a nonincreasing rearrangement of
the function G(x) := ‖Dx − Tnx‖q with respect to the standard Gaussian measure γm on R

m, it
follows that

EG(X) =
∫
Rm

G(x)dγm(x) =
1∫

0

e(D,Tn, γm, t) dt. (4.11)

Next, we note that for x, y ∈ R
m,

∣∣G(x) − G(y)
∣∣ � ∥∥(D − Tn)(x − y)

∥∥
q
� τ‖x − y‖2,

where

τ := sup
‖z‖2=1

∥∥(D − Tn)z
∥∥

q
= sup

‖z‖q′=1

∥∥(
D − T ∗

n

)
z
∥∥

2 = sup
‖z‖q′=1

∥∥∥∥∥
m∑

j=1

zj

(
D − T ∗

n

)
ej

∥∥∥∥∥
2

� sup
‖z‖q′=1

m∑
j=1

|zj |
∥∥(

D − T ∗
n

)
ej

∥∥
2 =

(
m∑

j=1

∥∥(
D − T ∗

n

)
ej

∥∥q

2

)1/q

= C(q)−1(
E

∥∥(D − Tn)X
∥∥q

q

)1/q � cEG(X) =: σ3.

Thus, it follows from the Gaussian concentration inequality (4.2) that for any s > 0

P
(∣∣G(X) −EG(X)

∣∣ > s
)
� 2 exp

(
− s2

K2σ 2
3

)
. (4.12)

Given t ∈ (0,1], we choose s = Kσ3
√

ln(2/t) = CEG(X)
√

ln(2/t) so that 2 exp(−s2/K2σ 2
3 ) =

t , and then apply (4.12) to deduce

P
(∣∣G(X)

∣∣ >
(
1 + C

√
ln(2/t)

)
EG(X)

)
� t.

Using (4.9), we conclude that

e(D,T , γm, t)�
(
1 + C

√
ln(2/t)

)
EG(X). (4.13)

Now letting δ0 ∈ (0,1) be such that
∫ δ0

0 (1+√
ln(2/t) ) dt = 1

2 , we deduce from (4.11) and (4.13)
that for any δ ∈ (0, δ0),
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EG(X) =
1∫

0

e(D,Tn, γm, t) dt

�
( δ∫

0

(
1 + C

√
ln(2/t)

)
dt

)
EG(X) +

1∫
δ

e(D,T , γm, t) dt

� 1

2
EG(X) + e(D,T , γm, δ).

It follows that

e(D,Tn, γm, δ) � 1

2
EG(X) � C

(
E‖DX − TnX‖q

q

) 1
q

� C inf
Tn

(
E‖DX − TnX‖q

q

) 1
q

= Cλ(a)
n

(
D :Rm → �m

q , γm

)
q

= CC(q)σ2,

which proves (4.10), and hence the desired lower estimate (4.6). This completes the proof of
Theorem 4.1. �
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