11,771 research outputs found

    Robust Design for Amplify-and-Forward MIMO Relay Systems with Direct Link and Imperfect Channel Information

    Get PDF
    In this paper, we propose statistically robust design for multiple-input multiple-output (MIMO) relay systems with the direct source-destination link and imperfect channel state information (CSI). The minimum mean-squared error (MMSE) of the signal waveform estimation at the destination node is adopted as the design criterion. We develop two iterative methods to solve the nonconvex joint source, relay, and receiver optimization problem. In particular, we derive the structure of the optimal relay precoding matrix and show the effect of CSI mismatch on the structure of the optimal robust source and relay matrices. The proposed algorithms generalize the transceiver design of MIMO relay systems with the direct link to the practical scenario of imperfect CSI knowledge. Simulation results demonstrate an improved performance of the proposed algorithms with respect to the conventional methods at various levels of CSI mismatch

    Optimal Source and Relay Design for Multiuser MIMO AF Relay Communication Systems with Direct Links and Imperfect Channel Information

    Get PDF
    In this paper, we propose statistically robust design for multiuser multiple-input multiple-output (MIMO) relay systems with direct source-destination links and imperfect channel state information (CSI). The minimum mean-squared error (MMSE) of the signal waveform estimation at the destination node is adopted as the design criterion. We develop two iterative methods to solve the nonconvex joint source, relay, and receiver optimization problem. Simulation results demonstrate the improved robustness of the proposed algorithms against CSI errors

    Joint Learning of Body and Part Representation for Person Re-Identification

    Full text link
    © 2013 IEEE. Person re-identification (ReID), aiming to identify people among multiple camera views, has attracted an increasing attention due to the potential of application in surveillance security. Large variations in subjects' postures, view angles, and illuminating conditions as well as non-ideal human detection significantly increase the difficulty of person ReID. Learning a robust metric for measuring the similarity between different person images is another under-addressed problem. In this paper, following the recent success of part-based models, in order to generate a discriminative and robust feature representation, we first propose to learn global and weighted local body-part features from pedestrian images. Then, in the training phase, angular loss and part-level classification loss are employed jointly as a similarity measure to train the network, which significantly improves the robustness of the resultant network against feature variance. Experimental results on several benchmark data sets demonstrate that our method outperforms the state-of-the-art methods

    Nonequilibrium phase transition in the kinetic Ising model: Is transition point the maximum lossy point ?

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimension) and by solving the meanfield dynamical equation of motion for the average magnetization. The temperature variations of hysteretic loss (loop area) and the dynamic correlation have been studied near the transition point. The transition point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the transition point. An analytical formulation has been developed to analyse the simulation results. A general relationship among hysteresis loop area, dynamic order parameter and dynamic correlation has also been developed.Comment: 8 pages Revtex and 4 Postscript figures; To appear in Phys. Rev.

    Single-carrier iterative frequency-domain equalization with soft decision feedback in shallow underwater acoustic communication

    Get PDF
    This paper investigates a single-carrier iterative frequency-domain equalization (SC-IFDE) scheme for high-rate underwater acoustic (UA) communication systems. This scheme is based on the minimum mean-squared error (MMSE) criterion, and soft decision feedback is applied to improve the reliability of the equalizer decision. The proposed algorithm is applied to the data received during the UA communication experiment conducted in December 2012 in the Indian Ocean off Rottnest Island, Western Australia. It is demonstrated that using one transmitting transducer and one receiving hydrophone, the proposed SC-IFDE algorithm achieves an average of 3% uncoded bit-error-rate (BER) with quaternary phase shift keying (QPSK) modulated signals over a range of 1 km

    Continuously tunable metasurfaces controlled by single electrode uniform bias-voltage based on nonuniform periodic rectangular graphene arrays

    Get PDF
    Metasurfaces, the two-dimensional artificial metamaterials, have attracted intensive attention due to their abnormal ability to manipulate the electromagnetic wave. Although there have been considerable efforts to design and fabricate beam steering devices, continuously tunable devices with a uniform bias-voltage have not been achieved. Finding new ways to realize more convenient and simpler wavefront modulation of light still requires research efforts. In this article, a series of novel reflective metasurfaces are proposed to continuously modulate the wavefront of terahertz light by uniformly adjusting the bias-voltage. By introducing the innovation of nonuniform periodic structures, we realize the gradient distribution of the reflected light phase-changing-rate which is the velocity of phase changing with Fermi energy. Based on strict phase distribution design scheme, a beam scanner and a variable-focus reflective metalens are both demonstrated successfully. Furthermore, dynamic and continuous control of either the beam azimuth of beam scanner or the focal length of metalens can be achieved by uniformly tuning the Fermi energy of graphene. Our work provides a potentially efficient method for the development and simplification of the adjustable wavefront controlling devices

    Channel estimation based on compressed sensing in high-speed underwater acoustic communication

    Get PDF
    The underwater acoustic (UA) channel is dispersive in both time and frequency with severe frequency-dependent signal attenuation. Efficient channel estimation and tracking are crucial to coherent high-rate UA communication. In this paper, we propose a new compressed sensing (CS) based channel estimation method with block-by-block channel tracking for UA communication. Compared with conventional channel estimation algorithms, the proposed method efficiently exploits the sparsity of the UA channel, and improves the channel tracking capability of UA communication system. The proposed algorithm was tested during our UA communication experiment conducted in December 2012 in the Indian Ocean off Rottnest Island, Western Australia. At a data rate of 8 kbps (QPSK constellations), average uncoded bit-error-rates (BERs) of 3% and 14% have been achieved over 1 km and 6 km ranges, respectively, using MMSE equalization based on the proposed channel estimation and tracking method

    MoSâ‚‚/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution

    Get PDF
    It is important to develop a low-cost and easy-prepared electrocatalyst for hydrogen evolution reaction. In this work, MoS_{2}/NiS hierarchical nanostructures (HHs) were fabricated on Ni foam by a simple one-step hydrothermal reaction using Ni foam as raw materials directly. Owing to the unique synthetic strategy that provide uniform MoS_{2}/NiS HHs structure on the porous Ni foam, generate abundant active surfaces, small resistance, furthermore it is beneficial for carrier migration and contributing to a large number of active sites. Excellent electrocatalytic performances are obtained such as an overpotential of only ~84.1 mV to reach the current density of 10 mA cm^{-2}, a Tafel slope of 76.9 mV dec^{-1} and a small inherent resistance of 6.33 Ω. More importantly, a quick current response under multistep potentials is realized and an excellent stability retained after 3000 cycles of CV test. Besides, a DC power to supply a device (MnMoO_{4}//MoS_{2}/NiS HHs B) under 1.6 V can generate a current density of 21 mA cm^{-2}, demonstrating its practical application

    AHD2.0: an update version of Arabidopsis Hormone Database for plant systematic studies

    Get PDF
    Phytohormone studies enlightened our knowledge of plant responses to various changes. To provide a systematic and comprehensive view of genes participating in plant hormonal regulation, an online accessible database Arabidopsis Hormone Database (AHD) has been developed, which is a collection of hormone related genes of the model organism Arabidopsis thaliana (AHRGs). Recently we updated our database from AHD to a new version AHD2.0 by adding several pronounced features: (i) updating our collection of AHRGs based on most recent publications as well as constructing elaborate schematic diagrams of each hormone biosynthesis and signaling pathways; (ii) adding orthologs of sequenced plants listed in OrthoMCL-DB to each AHRG in the updated database; (iii) providing predicted miRNA splicing site(s) for each AHRG; (iv) integrating genes that genetically interact with each AHRG according to literatures mining; (v) providing links to a powerful online analysis platform WebLab for the convenience of in-time bioinformatics analysis and (vi) providing links to widely used protein databases and integrating more expression profiling information that would facilitate users for a more systematic and integrative analysis related to phytohormone research

    Provincial and sector-level material footprints in China

    Get PDF
    High-income countries often outsource material demands to poorer countries along with the associated environmental damage. This phenomenon can also occur within (large) countries, such as China, which was responsible for 24 to 30% of the global material footprint (MF) between 2007 and 2010. Understanding the distribution and development of China’s MF is hence critical for resource efficiency and circular economy ambitions globally. Here we present a comprehensive analysis of China’s MF at the provincial and sectoral levels. We combine provincial-level input–output data with sector- and province-specific trade data, detailed material extraction data, and the global input–output database EXIOBASE. We find that some provinces have MFs equivalent to medium-sized, high-income countries and limited evidence of material decoupling. Lower-income regions with high levels of material extraction can have an MF per capita as large as developed provinces due to much higher material intensities. The higher-income south-coastal provinces have lower MF per capita than equally developed provinces. This finding relates partly to differences in economic structure but indicates the potential for improvement across provinces. Investment via capital formation is up to 4 times more resource-intensive than consumption and drives 49 to 86% of provincial-level MFs (the Organisation for Economic Co-operation and Development average is 37%). Resource-efficient production, efficient use of capital goods/infrastructure, and circular design are essential for reductions in China’s MF. Policy efforts to shift to a high-quality development model may reduce material intensities, preferably while avoiding the further outsourcing of high-intensity activities to other provinces or lower-income countries
    • …
    corecore