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Abstract—The underwater acoustic (UA) channel is dispersive
in both time and frequency with severe frequency-dependent
signal attenuation. Efficient channel estimation and tracking
are crucial to coherent high-rate UA communication. In this
paper, we propose a new compressed sensing (CS) based channel
estimation method with block-by-block channel tracking for UA
communication. Compared with conventional channel estimation
algorithms, the proposed method efficiently exploits the sparsity
of the UA channel, and improves the channel tracking capability
of UA communication system. The proposed algorithm was
tested during our UA communication experiment conducted in
December 2012 in the Indian Ocean off Rottnest Island, Western
Australia. At a data rate of 8 kbps (QPSK constellations),
average uncoded bit-error-rates (BERs) of 3% and 14% have
been achieved over 1 km and 6 km ranges, respectively, using
MMSE equalization based on the proposed channel estimation
and tracking method.

Index Terms—Channel estimation, channel tracking, com-
pressed sensing, underwater acoustic channel.

I. INTRODUCTION

The underwater acoustic (UA) channel is affected by many
factors such as temperature, salinity, depth, storms, ocean
currents, and interface reflections. In underwater communi-
cations, due to the effects of wind and currents, the relative
motion between a drifting transmitter and receiver can reach
a few meters per second even under mild weather conditions.
Considering that the speed of sound in water is around 1500
m/s, such motion generates strong Doppler effects. On the
other hand, the bandwidth available for UA communication
is limited and is inversely proportional to the transmission
range [1]. It is shown in [2] that the range-rate product of
most UA communication systems is upper-bounded by 40
km-kbps. This indicates that the bandwidth spent for channel
training should be limited in order to achieve high-rate UA
communication. A highly varying environment and limited
bandwidth make efficient channel estimation and tracking in
UA communication extremely challenging.

It has been shown in [3] that UA channels are sparse, with
only a few propagation paths carrying the significant portion of
channel energy. The sparsity of UA channels can be exploited
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to improve the accuracy of channel estimation, for example, by
the compressed sensing (CS) technique [4], [5]. In particular,
sparse channel estimation can be implemented through a
greedy method named matching pursuit (MP) algorithm [6]-
[8]. When comparing the MP method [6] and the orthogonal
MP (OMP) method [7], the latter one has a faster convergence
speed and a better estimation by avoiding the so-called re-
election phenomenon. On the other hand, the CoSaMP method
[8] has the dual advantages of greedy algorithm and convex
method, and performs better on both reconstruction and com-
puting. Therefore, OMP and CoSaMP methods are both used
as CS-based channel estimation algorithms in our paper.

Both the OMP and CoSaMP algorithms only work well in
quasi-static channels. To have accurate channel estimation in
the fast time-varying UA channel, the CS-based channel train-
ing should be performed periodically. The channel between
two adjacent training sequences can be treated as quasi-static
if the channel training frequency is sufficiently high. However,
channel training sequences consume precious bandwidth in
UA communications.

To increase the bandwidth efficiency of channel estimation,
a block-by-block channel tracking method is developed in
[9], where the time-varying channel is tracked by a decision-
directed time-domain least-squares (TD-LS) algorithm within
each data block using the data estimated in that block. In this
way, the UA channel can be estimated and tracked with a
much shorter training sequence. Moreover, the computational
complexity of the block-wise channel tracking method is much
smaller compared with symbol-by-symbol channel tracking
methods. However, the LS algorithm used in [9] is not the
best choice for the UA channel, since it does not exploit the
sparsity of the channel.

In this paper, we propose a new algorithm that combines
the advantages of CS-based channel estimation and block-by-
block channel tracking for UA communication. The proposed
UA channel estimation algorithm is tested in our UA com-
munication experiment conducted in December 2012 in the
Indian Ocean off Rottnest Island, Western Australia. At a data
rate of 8 kbps with QPSK constellations, average uncoded bit-
error-rates of 3% and 14% have been achieved over 1 km and
6 km ranges, respectively, using the MMSE equalization based



 

Fig. 1. General location of the experiment environment along 50m depth
contour

on the proposed channel estimation and tracking method.
The rest of this paper is organized as follows. In Section

II, our UA communication experiment is introduced. The
system model for channel estimation and tracking is given in
Section III. The OMP and CoSaMP based channel estimation
algorithms are developed in Section IV. The results obtained
using the proposed algorithm are presented in Section V, and
conclusions are drawn in Section IV. We use the following
notations throughout the paper: column vectors and matrices
are denoted by lower case and upper case bold face symbols,
respectively. The Moore-Penrose matrix pseudo inverse is
denoted as X†.

II. EXPERIMENT ARRANGEMENT

An UA communication experiment was conducted in De-
cember 2012 over distances of 125m to 10 km in the Indian
Ocean off Rottnest Island, Western Australia, as shown in
Figure 1. The receiver (recorder) was located on the sea bed
close to the Rottnest Waverider Buoy. The red dots with labels
of T52, T54, T55, T56, T57, T58, T59, T60, and T61 denote
the transmitter positions which were 125 m, 250 m, 500 m, 1
km, 2 km, 4 km, 6 km, 8 km, and 10 km from the receiver,
respectively. The average water depth was 50 m.

The transmitter and receiver arrangements are illustrated in
Figure 2. At the transmitter, a single transducer was attached
to a drifting vessel through cable, and the nominal transducer
depth was 20 m. A single hydrophone at the receiver was
attached through a cable at 1 m above the seabed. A drifting
transmitter was selected to give flexibility in exploring dif-
ferent communication ranges, however this arrangement also
allows movement of the transducer and hydrophone, increasing
the Doppler shifts and Doppler spreading, and making channel
estimation and tracking more challenging. According to the
GPS data, at the 1 km range, the average drift speed of the
vessel was 0.96 m/s, with the peak drift speed of 1.7 m/s.

Signals were transmitted at the 12 kHz centre frequency
of the transmit transducer. The system bandwidth was 4
kHz. Transmitted and received signals were sampled with

 
 

Sea bed at 50m 

    16.5m vessel  
 

  CTG transmitter at 20m depth 

Source hydrophone  

 

 

recorder 

float  

 hydrophone 1m off seabed 

 

retrieve line  

 

  

 
 

 

  

 

Fig. 2. Transmitter and receiver diagram
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Fig. 3. System model

24 bit resolution at 96 kHz. 8PSK and QPSK symbols were
transmitted at ranges of 125 m, 250 m, 500 m, 1 km, 2 km,
and 4 km. QPSK and BPSK symbols were transmitted at the
ranges of 6 km and 8 km. At a range of 10 km, BPSK symbols
were transmitted.

III. SYSTEM MODEL

The block diagram of our UA communication system is
shown in Figure 3.

At the channel training stage, the system input-output rela-
tionship is given by
y(1)
y(2)
...
y(M)

=


x(1) x(0) · · · x(2−N)
x(2) x(1) · · · x(3−N)

...
...

. . .
...

x(M)x(M − 1)· · ·x(M + 1−N)



h(1)
h(2)
...
h(N)

+

v(1)
v(2)
...
v(N)


(1)

where x(i), y(i), v(i) are the training signal, the received
signal, and the additive noise, respectively,h(i) denotes the
impulse response of the UA channel, N is the length of the
channel and M represents the length of received signal that is
observed. Equation (1) can be rewritten using matrix-vector
notation as

y = Xh + v (2)
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Fig. 4. Block diagram of the proposed channel estimation tracking method

where X is the training matrix. The problem we face is how
to obtain the channel information h given the matrix X and
the received signal y.

It can be seen from (2) that the length of the training
sequence should be larger than the channel memory length. In
high-rate UA communications, the channel memory length is
often on the order of a hundred symbols. On the other hand,
due to the severe Doppler effect, the coherence time of the
UA channel only spans about a couple of hundred symbols.
This makes accurate UA channel estimation very challenging
without compromising the system bandwidth efficiency. To
address this challenge, in this paper, we propose a decision-
directed CS-based method to estimate and track the channel
impulse response of fast-varying UA channels in a block-by-
block manner as shown in Figure 4.

The initial channel estimation is obtained by the fixed-
length training sequence. Then the detected symbols within
each block are used to re-estimate the current channel which
can be employed to correct the current data block and then
equalize the next received data block. Since the length of data
blocks is sufficiently short, we can assume that the channel
is static within each block. Assuming that one data frame is
divided into L blocks, the specific steps are shown below.

1) Based on the known training sequence, an initial channel
estimation h0 is obtained using the CS-based algorithm.

2) Then we track the channel of the l-th block hl, where
l = 1, 2, ..., L, through the following steps.

a) Using the channel estimation of the previous
block hl−1 , we obtain a rough estimation x̃l of
the transmit signals by using the MMSE-based
overlapped-window frequency-domain equaliza-
tion (FDE) method. The cyclic prefix (CP) is only
added ahead of each frame and there is no cyclic
prefix in the data block. Therefore, the accuracy of
x̃l is not very high.

b) After the decision of x̃l has been made to the corre-
sponding constellation points, x̄l is obtained. Then
the current channel estimation hl can be obtained
using known x̄l through CS-based method.

c) With the information of the estimated current chan-
nel, we can process the received signal yl to obtain
ŷl, which is suitable for the FDE method.

d) Estimate the transmit signal x̂l of the current block
with a second MMSE FDE process using ŷl and
hl.

IV. COMPRESSED SENSING METHODS

It can be seen from (1) that X is an M ×N Toeplitz matrix
of known training sequence. The impulse response of the UA
channel h is the sparse signal that we want to reconstruct using
X and the received signal y. The CS theory can be applied to
estimate h. In the terminology of the CS theory, ‖h‖0 = k is
the sparsity of the channel, X is known as a dictionary, whose
column vectors xi(i = 1, 2, ..., N) are called atoms.

One of the fundamental problems in CS is to identify
the measure matrices that are sufficient to ensure precise
reconstruction of sparse vector h from observation vector y.
Matrices which have this character are named as CS matrices.
It has been proven in [10] that an M ×N Toeplitz matrix X
of the following form is a CS matrix with high probability.

X =


x(1) x(0) · · · x(2−N)
x(2) x(1) · · · x(3−N)

...
...

. . .
...

x(M) x(M − 1) · · · x(M + 1−N)

 (3)

This matrix is used as the measure matrix of channel
tracking within the data blocks in our UA communication
experiment. As an extension of the Toeplitz matrix (3), a
circulant matrix given by (4) below has been proven a CS
matrix with high probability. Circulant matrix (4) is the
measure matrix of initial channel estimation within each frame
and Toeplitz matrix (3) is the measure matrix of the following
channel estimation when a FDE is used.

X =


x(1) x(M) · · · x(M −N + 2)
x(2) x(1) · · · x(M −N + 3)

...
...

. . .
...

x(M) x(M − 1) · · · x(M −N + 1)

 (4)

After the recoverability of the measure matrix has been proven,
in the following, we introduce two CS methods that are used
in this paper.

A. The OMP method

The main idea of the OMP method is explained below. Since
h has only k nonzero elements, the received signal vector
y = Xh+v is a linear combination of k columns from X when
the noise vector v is ignored. In the terminology of sparse
approximation, we say that y has a k-term representation over
the dictionary X. To identify the UA channel impulse response
h, we need to determine the columns of X that are spanned
by y. In the OMP method, these columns are determined in
an iterative fashion. At each iteration, we choose the column
of X that is most strongly correlated with the remaining
part of y. Then we subtract off its contribution from y. This
procedure continues until all columns are identified, or the
residual is sufficiently small. Then the estimated UA channel
ĥ is obtained.

As the OMP method ensures orthogonality among atoms
selected throughout iterations, it reduces the number of it-
erations significantly. However, the OMP method takes only



one atom in each iteration, which is inefficient in term of
the computational complexity, especially for h with a large
dimension. This makes the OMP method a suboptimal choice
in a high-rate UA system. In the next subsection, we introduce
a faster CS method called CoSaMP.

B. The CoSaMP method

CoSaMP is a signal reconstruction method proposed in 2009
[10]. It has the stability of the basis pursuit (BP) algorithm
as well as the quick and easy implementation of the greedy
algorithm such as OMP, which are important to the reliability
and effectiveness of the UA channel estimation. The specific
steps of this algorithm are as follows.

1) Initialization: Set the sparsity of the UA channel as k.
Assume that ĥ0 is an N -dimension zero vector. Set the
residual as r0 = y and the number of iterations as l = 1.

2) The steps for the l-th iteration (l = 1, 2, . . .) are given
below.

a) Compute the correlation |〈rl−1 , xi〉| between the
residual rl−1 and the columns of X and choose 2k
columns that have the largest value. Denote gl as
the indexes of the 2k columns selected from X.

b) Combine the set of index tl = gl ∪
sup

{
ĥl−1

}
,where sup

{
ĥl−1

}
represents the

indexes of nonzero values in ĥl−1.
c) Obtain the estimated vector bl by the LS algorithm.

The elements of bl with index tl are given by X†tly,
and other elements of bl are set as zero.Xtl is a
matrix consisting of the columns of X with index
tl.

d) Obtain the new estimation ĥl as the largest k
elements of bl.

e) Update the residual: rl = y− Xĥl.
The UA channel estimation ĥ is obtained after k/2 iterations

or when the residual is sufficiently small.

V. TEST RESULTS FROM THE SEA EXPERIMENT

In this section, we present the performance of the proposed
channel estimation algorithm in the UA communication exper-
iment conducted in December 2012 in the Indian Ocean off
the Rottnest Island, Western Australian.

The typical time-varying equivalent channel impulse re-
sponses (CIRs) during one data block are shown in Figure 5
and Figure 6 for communications over 1 km and 6 km range,
respectively. These figures show the channels estimated by
the training sequence and the 4th data block detected. They
have all been normalized by the maximum of CIR in 1km
system, which is estimated by training sequence. It can be
seen that due to smaller channel attenuation in shorter range
communication, the amplitude of CIRs of the 1 km system are
larger than those of the 6 km system. It can also be observed
from these two figures that the amplitude of CIRs are varying
very fast even in one data frame.

Figure 7 shows the average uncoded BER with QPSK
constellation at different range. The system data rate is 8
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Fig. 5. The CIRs in one frame duration for the 1km system
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Fig. 6. The CIRs in one frame duration for the 6km system

kbps. We compare the proposed CS-based channel estimation
method with block-by-block channel tracking with the CS-
based channel estimation without channel tracking. The OMP
algorithm is used for both methods. It can be clearly seen
from Figure 7 that our block-by-block channel estimation and
tracking method with CS-based channel estimation performs
better than the traditional CS-based channel estimation, and
therefore, provides more accurate channel estimation for the
channel equalization.

Figure 8 shows the performance comparison of the tradi-
tional LS channel estimation method and the channel estima-
tion algorithms based on CS in terms of the average uncoded
BER versus the communication range. The system data rate
is 8 kbps. The OMP and CoSaMP methods are adopted to
implement the CS-based channel estimation. All methods are
tested in the communication ranges of 1 km, 2 km, 4 km,
6 km, and 8 km, respectively in our experiment. All three
methods adopt the block-by-block channel tracking approach.

It can be seen from Figure 8 that the channel estimation
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Fig. 8. BER performance of different channel estimation methods

based on the OMP algorithm and the CoSaMP algorithm
perform better than the traditional LS algorithm. This is
because the LS algorithm does not take advantage of the
sparsity of the UA channel. The OMP algorithm and CoSaMP
algorithm show similar performance in this experiment. How-
ever, considering the computational complexity, the CoSaMP
algorithm is more suitable for channel estimation in a high-
rate UA communication system. It can also be observed from
Figure 8 that as the communication distance increases, the
BERs of the three algorithms increase due to the reduced SNR
caused by the longer communication range.

VI. CONCLUSION

We presented an efficient channel estimation method for
high-rate UA communication that combines the advantages
of block-by-block decision-directed channel tracking and the
CS-based channel estimation. It was shown through our UA
communication experiment that the proposed algorithm greatly
increases the accuracy of time-varying UA channel estimation.
Compared with the traditional LS algorithm using the same

block-by-block channel tracking method, the proposed method
reduced the uncoded BER by 66.7% and 46.2% in 1 km and 6
km range, respectively. The reduction of BER achieved 70%
and 26.3% over that of CS-based channel estimation without
the block-by-block channel tracking algorithm in 1 km and 6
km range, respectively.
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