383 research outputs found

    'I Want to Make Queer Films, But Not LGBT films’: An Interview with He Xiaopei

    Get PDF
    Despite decriminalization in 1997 and partial pathologization in 2001, homosexuality remains a sensitive topic in contemporary China. This is reflected in mainstream and online media where representation of LGBTQ-related issues are often subject to heavy censorship. However, despite the austere restrictions that exist, the past two decades have witnessed the emergence of “‘new queer Chinese cinema”’ (Leung 2012; Yue 2012; Pecic 2016; Bao 2018). Led by a number of young independent queer filmmakers along with advancements in new media technologies, this underground movement of queer filmmaking have has created new possibilities for imagining sexuality and gender as well as opportunities for community -building.He Xiaopei is a leading queer feminist filmmaker, activist, and director of Beijing-based NGO Pink Space, an NGO dedicated to promoting sexual rights and gender equality. Her films include The Lucky One (Chong’er, 2012), Our Marriages: Lesbians Marry Gay Men (Yisheng qiyuan, 2013), Yvo and Chrissy (Ruci Shenghuo, 2017) and Playmates (Wanban, 2019). The Lucky One tells the story of Zhang Xi, a HIV- positive woman with only a short time to live. A kind of video diary of Zhang’s life, the film questions notions of fact and fiction, as well as the politics of representation when working with marginalized people. Our Marriages: Lesbians Marry Gay Men explores how two lesbian couples in Northeast China negotiate norms and expectations around marriage, and the possibilities for queer life in Chinese society. Yvo and Chrissy follows the lives of two people from England who gave up an inheritance of one million pounds as well as several properties, and reflects on questions of wealth, gender, sexuality, and happiness. He’s work to date has demonstrated a distinctly antinormative approach to gender and sexuality, while also highlighting some of the less discussed issues of class, precarity, and marginality in China and elsewhere.In February 2017, SĂ©agh Kehoe, PhD candidate from the University of Nottingham, spoke with He about her work and the place of documentary filmmaking in queer activism in China today

    The CDF dijet excess from intrinsic quarks

    Get PDF
    The CDF collaboration reported an excess in the production of two jets in association with a WW. We discuss constraints on possible new particle state interpretations of this excess. The fact of no statistically significant deviation from the SM expectation for {ZZ+dijet} events in CDF data disfavors the new particle explanation. We show that the nucleon intrinsic strange quarks provide an important contribution to the WW boson production in association with a single top quark production. Such {WW+t} single top quark production can contribute to the CDF {WW+dijet} excess, thus the nucleon intrinsic quarks can provide a possible explanation to the CDF excess in {WW+dijet} but not in {ZZ+dijet} events.Comment: 4 latex pages, 1 figure. Version for journal publicatio

    Partial Wave Analysis of J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∌500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/Ïˆâ†’ÎłÎ·c\psi\to\gamma\eta_c is observed in five different decay channels: ÎłK+K−π+π−\gamma K^+K^-\pi^+\pi^-, ÎłÏ€+π−π+π−\gamma\pi^+\pi^-\pi^+\pi^-, ÎłK±KS0π∓\gamma K^\pm K^0_S \pi^\mp (with KS0→π+π−K^0_S\to\pi^+\pi^-), ÎłÏ•Ï•\gamma \phi\phi (with ϕ→K+K−\phi\to K^+K^-) and Îłppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    Direct Measurements of the Branching Fractions for D0→K−e+ÎœeD^0 \to K^-e^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+Îœe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+Îœe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/Ïˆâ†’ÎłÏ•Ï•â†’ÎłK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/Ïˆâ†’ÎłÎ·(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→Ό+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→Ό+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→Ό+X)BF(D0→Ό+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb−1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb−1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+e−e^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur
    • 

    corecore