1,380 research outputs found

    Slower and Less Variable Binocular Rivalry Rates in Patients With Bipolar Disorder, OCD, Major Depression, and Schizophrenia

    Get PDF
    When two different images are presented to the two eyes dichoptically, observers usually experience a perceptual alternation between the two images. This phenomenon, known as binocular rivalry, has been used as a powerful tool to investigate mechanisms of visual awareness. It was also found that the rates of perceptual alternation are slower in patients with bipolar disorder than in healthy controls (Pettigrew and Miller, 1998; Miller et al., 2003). To investigate the broader clinical relevance of binocular rivalry in psychiatric disorders, we measured the perceptual alternation rates during rivalry in healthy controls (n = 39) and in patients with different types of psychiatric disorders, including bipolar disorder type I (BD, n = 28), obsessive–compulsive disorder (OCD, n = 22), major depression (MD, n = 50), schizophrenia (SCZ, n = 44), and first-degree relatives (FDRs) of SCZ patients (n = 32). Participants viewed competing red–green images on a computer monitor through red–green anaglyph glasses and pressed buttons to record their perceptual alternations. The distributions of the rivalry rates were well described by a lognormal function in all groups. Critically, the median rate of perceptual alternation was 0.27 Hz for BD patients, 0.26 Hz for the OCD patients, 0.25 Hz for the MD patients, and 0.23 Hz and 0.27 Hz for the SCZ patients and their FDRs, respectively. All of which were significantly slower than the rate of 0.41 Hz obtained for the healthy controls, suggesting there may be shared genotypes between these different disorders. While rivalry alternations were generally slower in different types of psychiatric disorders compared to healthy controls, adding variance of rivalry rates in the analysis helped to partially separate among the different patient groups. Our results suggest that the slowing of binocular rivalry is likely due to certain common factors among the patient groups, but more subtle differences between different patient groups could be revealed when additional properties of rivalry dynamics are considered

    Link prediction in evolving networks based on popularity of nodes

    Get PDF
    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes

    Investigation of a Side-polished Fiber MZI and Its Sensing Performance

    Get PDF
    A novel all-fiber Mach–Zehnder interferometer (MZI), which consists of lateral core fusion splicing of a short section of side-polished single mode fiber (SMF) between two SMFs was proposed and demonstrated. A simple fiber side-polished platform was built to control the side polished depth through a microscope. The sensitivity of the fiber MZI structure to the surrounding refractive index (RI) can be greatly improved with the increase of the side-polished depth, but has no effect on the temperature sensitivity. The sensor with a polished depth of 44.2 μm measured RI sensitivity up to -118.0 nm/RIU (RI unit) in the RI range from 1.333 to 1.387, which agrees well with simulation results by using the beam propagation method (BPM). In addition, the fiber MZI structure also can achieve simultaneous measurement of both RI and temperature. These results show its potential for use in-line fiber type sensing application

    Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells

    Get PDF
    BACKGROUND: The microtubule associated protein tau is the principle component of neurofibrillar tangles, which are a characteristic marker in the pathology of Alzheimer's disease; similar lesions are also observed after chronic alcohol abuse. Formaldehyde is a common environmental contaminant and also a metabolite of methanol. Although many studies have been done on methanol and formaldehyde intoxication, none of these address the contribution of protein misfolding to the pathological mechanism, in particular the effect of formaldehyde on protein conformation and polymerization. RESULTS: We found that unlike the typical globular protein BSA, the natively-unfolded structure of human neuronal tau was induced to misfold and aggregate in the presence of ~0.01% formaldehyde, leading to formation of amyloid-like deposits that appeared as densely staining granules by electron microscopy and atomic force microscopy, and bound the amyloid-specific dyes thioflavin T and Congo Red. The amyloid-like aggregates of tau were found to induce apoptosis in the neurotypic cell line SH-SY5Y and in rat hippocampal cells, as observed by Hoechst 33258 staining, assay of caspase-3 activity, and flow cytometry using Annexin V and Propidium Iodide staining. Further experiments showed that Congo Red specifically attenuated the caspase-3 activity induced by amyloid-like deposits of tau. CONCLUSION: The results suggest that low concentrations of formaldehyde can induce human tau protein to form neurotoxic aggregates, which could play a role in the induction of tauopathies

    Poly[(μ2-quinoline-3-carboxyl­ato-κ2 N:O)(μ2-quinoline-3-carboxyl­ato-κ3 N:O,O′)cadmium]

    Get PDF
    In the title compound, [Cd(C10H6NO2)2]n, the CdII atom is coordinated by three O atoms and two N atoms from four quinoline-3-carboxyl­ate (L −) ligands, leading to a distorted trigonal–bipyramidal geometry. The L − ligands link the CdII atoms into a plane parallel to (100), with one ligand being tridentate, coordinating via the N atom and chelating a second Cd atom, and the other being bidentate, bridging two Cd atoms via the N and one O atom.. This two-dimensional network extends into a double-layer network by π–π inter­actions, with centroid–centroid distances of 3.680 (2) and 3.752 (2) Å. Another type of π–π inter­action between pyridine rings [centroid–centroid distance = 3.527 (2) Å] leads to a three-dimensional supra­molecular architecture

    Novel Microfiber Sensor and Its Biosensing Application for Detection of hCG Based on a Singlemode-Tapered Hollow Core-Singlemode Fiber Structure

    Get PDF
    A novel microfiber sensor is proposed and demonstrated based on a singlemode-tapered hollow core -singlemode (STHS) fiber structure. Experimentally a STHS with taper waist diameter of 26.5 μm has been fabricated and RI sensitivity of 816, 1601.86, and 4775.5 nm/RIU has been achieved with RI ranges from 1.3335 to 1.3395 , from 1.369 to 1.378, and from 1.409 to 1.4175 respectively, which agrees very well with simulated RI sensitivity of 885, 1517, and 4540 nm/RIU at RI ranges from 1.3335 to 1.337, from 1.37 to 1.374, and from 1.41 to 1.414 . The taper waist diameter has impact on both temperature and strain sensitivity of the sensor structure: (1) the smaller the waist diameter, the higher the temperature sensitivity, and experimentally 26.82 pm/°C has been achieved with a taper waist diameter of 21.4 μm; (2) as waist diameter decrease, strain sensitivity increase and 7.62 pm/με has been achieved with a taper diameter of 20.3 μm. The developed sensor was then functionalized for human chorionic gonadotropin (hCG) detection as an example for biosensing application. Experimentally for hCG concentration of 5 mIU/ml, the sensor has 0.5 nm wavelength shift, equivalent to limit of detection (LOD) of 0.6 mIU/ml by defining 3 times of the wavelength variation (0.06 nm) as measurement limit. The biosensor demonstrated relatively good reproducibility and specificity, which has potential for real medical diagnostics and other applications

    Wearable optical fiber sensor based on a bend singlemode-multimode-singlemode fiber structure for respiration monitoring

    Get PDF
    Respiration rate (RR) is an important information related to human physiological health. A wearable optical fiber sensor for respiration monitoring based on a bend singlemode-multimodesinglemode (SMS) fiber structure, which is highly sensitive to bend, is firstly proposed and experimentally demonstrated. The sensor fastened by an elastic belt on the abdomen of a person will acquire the respiration signal when the person breaths, which will introduce front and back movement of the abdomen, and thus bend of SMS fiber structure. Short-time Fourier transform (STFT) method is employed for signal processing to extract characteristic information of both the time and frequency domain of the measured waveform, which provides accurate RR measurement. Six different SMS fiber sensors have been tested by six individuals and the experimental results demonstrated that the RR signals can be effectively monitored among different individuals, where an average Pearson Correlation Coefficient of 0.88 of the respiration signal has been achieved, which agrees very well with that of commercial belt respiration sensor. The proposed technique can provide a new wearable and portable solution for monitoring of respiratory with advantage of easy fabrication and robust to environment
    corecore