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Link Prediction in Evolving 
Networks Based on Popularity of 
Nodes
Tong Wang1, Xing-Sheng He1, Ming-Yang Zhou2,3 & Zhong-Qian Fu1

Link prediction aims to uncover the underlying relationship behind networks, which could be utilized 
to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate 
the likelihood of potential links in networks. Most classical static-structure based methods ignore the 
temporal aspects of networks, limited by the time-varying features, such approaches perform poorly 
in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract 
links depends not only on its structural importance, but also on its current popularity (activeness), 
since active nodes have much more probability to attract future links. Then a novel approach named 
popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to 
characterize the likelihood of an edge from both existing connectivity structure and current popularity 
of its two endpoints. Experiments on six evolving networks show that the proposed methods 
outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical 
analysis reveal that the proposed methods are inclined to predict future edges between active nodes, 
rather than edges between inactive nodes.

Networks are effective descriptions of complex systems in society and nature1, 2, with entities denoted as nodes 
and relations as links, respectively. The organization of real networks evolve under the influence of certain pat-
terns and irregular factors, in principle, only the former can be modeled with physical methodologies. A sig-
nificant concern about complex networks is link prediction that conduces to explanations of these models and 
revelations of the hidden driving-mechanisms. Therefore, link prediction has drawn numerous attentions from 
various fields covering biology, sociology and others3–6. For example, in protein-protein interaction experiments 
in cells, only strong relations between proteins could be detected by limited precision of equipments. It is prohib-
itive to measure every interaction between all pair proteins due to sharply increasing experimental costs with the 
size of proteins7, 8, an appropriate approach is to evaluate the likelihood of potential relations and specifically test 
non-existing relations with the high likelihood. Also, in social contexts, two persons would build friendship in 
the near future with a high probability if they have many common friends or attributes, which could be utilized to 
uncover lost friends or predict future friends9–11. Besides, further extensive applications also include personalized 
recommendations in e-commerce12, 13 and aircraft route planning study14, etc.

The crux of link prediction is to evaluate the likelihood of potential edges, based on which we can rank the 
potential edges in descending order and edges in the top of ranking list are predicted as underlying or future 
edges15, 16. The similarity based approaches, which equate likelihood with similarity, are the most common frame-
works that argue the prospective edges may exist between similar nodes. To achieve this, traditional attribute 
based methods measure the likelihood of links by learning how many common features (e.g. common hobbies, 
ages, tastes, geographical locations) the two endpoints share17. Many researches on social networks have shown 
that the pervasive homophily promotes ties between similar humans18, 19. However this kind of methods suffer 
from the inaccessible and unreliable information of nodes due to the privacy policy in real scenario20. Luckily, the 
development of the complex network theory provides a new path in which only network topological structure is 
required regardless of privacy information to solve the problem. When evaluating the similarity between nodes, 
according to the structure differences, structure based methods could be classified into three categories: local 
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methods, global methods and Quasi-global methods. Local similarity is mainly based on common neighbors, 
such as the most well-known Common Neighbor (CN) index that counts the number of common neighbor 
nodes21, Adamic-Adar (AA) index and Resource Allocation (RA) index that depress the large-degree neigh-
bor nodes22, 23. For large networks, Cui et al. proposed a fast algorithm for calculating the number of common 
neighbors24. Global similarity emphasizes the global topology information of network, such as Katz index that 
counts all of the paths between two nodes25. Quasi-global similarity is a well trade-off of local similarity methods 
and global similarity methods, such as Local Path (LP) index that only considers the short paths in Katz index23, 
Local Random Walk (LRW) index that focuses on the limited random walk in local area26. Beyond that, some 
algorithms based on maximum likelihood methods and other exquisite models have been proposed. Clauset  
et al. proposed a Hierarchical Structure Model which presents well performance in hierarchical networks by using 
a dendrogram27. Lü et al. proposed a Structural Perturbation Method that approximates the observed networks 
by randomly repeated perturbations. This method outperforms state-of-the-art methods in accuracy and robust-
ness28. In terms of information theory, Xu et al. proposed the Path Entropy index that considers the information 
entropies of shortest paths and penalizes the long paths29. Tan et al. proposed a Mutual Information (MI) method 
with the high accuracy and reasonable computation time, which considers the feature of common neighbors 
and denotes the likelihood of one link as the the conditional self-information of this link existing between the 
node pair when their common neighbors are given30. Zhu et al. generalized the MI index into Neighbor Set 
Information that is applicable to multiple structural features to enhance the accuracy31.

Real networks are highly dynamic with the come-and-go of nodes and edges32. However, the aforementioned 
algorithms unexceptionally ignore the temporal aspects of real networks, in particular, the trend of nodes: yes-
terday active nodes that contacted numerous neighbors may be unpopular today. Inspired by this, we propose a 
hypothesis that the emergence of future links are not only determined by existing network structure, but also are 
affected by the popularity of endpoints. For instance, Fig. 1 illustrates the effects of popularity. The red node will 
enter in the network and connect with one of the existing nodes. In Fig. 1(a), according to the static analysis, node 
10 prefers to connect with the large-degree node 1. While the birth time of each edge is given in Fig. 1(b), we can 
easily know that node 3 is of high popularity because only it attracts edges at the present time t2. In practice, the 
fresh edge will be more likely to occur between node 10 and the active node 3 at the next period t3. To comply 
with this scenario, unlike previous works that predict potential links mostly based on static networks, we propose 
a popularity based structural perturbation method (PBSPM) and its fast algorithm that integrate popularity of 
nodes and observed network topology to predict future edges. Experimental results on real-world networks show 
that the proposed methods outperform the other traditional approaches in accuracy and robustness.

Results
Popularity metrics. The definition of popularity is related to the concepts of temporal trend of nodes that 
could be obtained through the statistics and analysis of relevant historical information. For two nodes with the 
same degree, one may connect with its neighbors at early stage and not form any connections later, while the 
other one develops most of its connections at late stage. Intuitively the latter node would attract more fresh edges 
with high probability in the near future. Given this, a straightforward approach to evaluate the popularity of a 
node is counting the edges it recently attracts.

Given an undirected and unweighted network G(V, E) where V and E represent the set of nodes and links, 
respectively, each link has a time-stamp that represents the entering time. In this work, multi-links and self-loops 
are not allowed. ki(t) denotes the degree of nodes i at time t. In the next time span T, node i would attract Δki(t, T)  
new edges,

∆ = + − .k t T k t T k t( , ) ( ) ( ) (1)i i i

Note that Δki(t, T) in Eq. (1) determined by both t and T cannot reflect the relative popularity of node i, since 
even large degree nodes become inactive, they still attract more fresh edges than nodes of small degree due to 
the preferential attachment mechanism. To solve this issue, for a dataset spans starting from ta to tc, we divide its 

Figure 1. Illustration of the popularity. The fresh link and node 10 will be added into the existing networks 
at the next time t3. In panel (a), attractiveness of nodes are determined by static features. According to the 
preferential attachment, node 10 prefers to connect with node 1 due to the largest degree. In panel (b), temporal 
effects are considered. The currently popular node 3 may become attractive and connect with node 10 at time t3.
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edges into the fresh set and the old set according to a boundary tb ∈ (ta, tc). If an edge was constructed in (ta, tb), 
it belongs to the old set otherwise the fresh set. The fraction of old edges and fresh edges are denoted as polder and 
pfresher. The pfresher can be comprehended as the observation length of historical information. Then, the popularity 
of node i is

=
∆ −
∆ −

=s k t t t
k t t t

k
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where ki,all and ki,fresher indicate the whole degree and fresher degree of node i. Equation (2) improves the draw-
backs of simply counting the new edges and quantifies the popularity in the normalized range. Clearly, if all links 
of node i locate in the fresh set, si = 1. For another case that all links of node i locate in the old set, node i becomes 
dormant, si = 0. Therefore si ∈ [0, 1] and a higher si means a higher popularity.

Popularity based structural perturbation method. In this section, we propose a hypothesis that the 
observed network is determined by some latent attractors (e.g. similar hobbies, ages, gender, location) that inde-
pendently influence the structural properties. For an attractor = …x x x x[ , , , ]k k k k n

T
,1 ,2 , , xk,i represents the attrac-

tiveness of node i for the latent attractor xk. Inspired by configuration model, the probability pij that an edge exists 
between two node i and j is proportional to xk,ixk,j. Supposing that there are m kinds of attractors, probability pij is 
defined as the weighted influence of each attractor,

∑=
=

p w x x ,
(3)ij

k

m

k k i k j
1

, ,

where wk is a tunable parameter to balance the relative influence of each attractor xk. The problem is how to 
seek the optimal wk and xk,i that make pij approximate aij at most. Considering a network G with adjacent matrix 
A = (aij)n × n, a special case is that pij = 1 if aij = 1, otherwise pij = 0. For optimal wk and xk,
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If m = n in Eq. (4), where n is the size of the network, then Eq. (4) could be comprehended as the matrix 
decomposition, with wk and xk representing eigenvalues and eigenvectors respectively. In practice, many random 
connections exist in networks, Lü et al. proposed the structural perturbation method (SPM) that can reduce the 
influence of randomness28. In SPM, a small fraction pH of edges ΔA is removed from the network, adjacent matrix 
AR of the remaining network is decomposed into

∑λ=
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where λk and xk are the eigenvalues and eigenvectors of AR, | | =x 1k . We could use AR to evaluate A with
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 is the coupling influence of xk on λk. Ã actually is a special case of Ap, (λk + Δλk) and ele-
ments of eigenvector xk represent weight difference and the attractiveness for attractor xk separately.

As we have argued, the ability for node i to attract new edges is determined by both latent attractors and its 
current popularity. To better meet practice, an advanced attractiveness ′xk i,  is proposed as

α′ = +x x s(1 ), (7)k i k i i, ,

where α indicates the degree of temporal popularity. Equation (7), a combination of the static attractiveness and 
popularity, tightly captures both the static features and the temporal information of the evolving pattern. Later in 
Eq. (6), substituting xk with x′k to predict future links,

∑ λ λ′ = + ∆ ′ ′ .
=

~
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Since Eq. (5) degenerates into Eq. (4) if the size m of attractors is less than n. Supposing that 
λ λ λ| | > | | > … > | |n1 2 , we substitute wk and xk in Eq. (4) with λk and xk in Eq. (5). Similar to the same transition 
from Eq. (5) to Eq. (8), we obtain

∑ λ λ′ = = + ∆ ′ ′Τ
×

=
A p x x( ) ( ) ,

(9)ij n n
k
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which reduces into Eq. (8) if m = n. In the following experiments, we firstly measure the performance of Eq. (8), 
then show that we could reduce the calculation complexity by using only a few eigenvalues and eigenvectors, that 
is m n in Eq. (9).
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Experiments on real networks. The proposed method PBSPM, integrating the attractiveness xk,i and 
popularity si, reduces into the original SPM when α = 0. With the increase of α, PBSPM prefers to predict links 
between popular nodes. Figure 2 gives the performance of PBSPM in contrast to SPM (α = 0) under different 
pfresher. The precision values tend to be stable or achieve the best when α brings the static attractiveness and 
popularity into balance. Clearly, the optimal value of α varies for different networks. For Hypertext, Infec and 
UcScoci, future links have high likelihood to exist between the active nodes. However, for the Haggle dataset, the 
temporal trend of nodes are less obvious. Hence, the precision curve is optimized at α = 2, contrast to the other 
three networks of which the curves finally stabilize when α increases. Overall, when α ∈ [3, 5], PBSPM achieves 
improved performance compared with SPM in the four networks. Moreover, given the different length of histor-
ical information pfresher, all the curves present different levels of superiority in precision, suggesting a general and 
robust range of pfresher. Actually, it is difficult to choose the optimal value, which should follow the principle of 
keeping the balance between the length of historical information and future information (probe set). With regard 
to 10% probe set in this experiment, Pfresher = 0.1 is the balanced option because the corresponding curves all show 
the great improvements.

Reducing the number of eigenvectors could reduce the computation complexity. To address the high compu-
tation complexity, we propose the fast PBSPM that takes into account a few eigenvectors with only some large 
eigenvalues, which can well reflect the backbone structure of networks33. In practical networks, a huge gap exists 
in the eigenvalue space. Some eigenvectors with large eigenvalues play more important roles than those with small 

α α

α α

Figure 2. Precision versus α obtained by PBSPM. The experiments are performed on 90% training set and 
10% probe set. Each data point is averaged over 10 independent realizations. The values of pfresher and α 
corresponding to the optimal precision reported in Table 1 vary for different networks: 0.05 and 9 for Hypertext, 
0.05 and 2 for Haggle, 0.10 and 11 for Infec, 0.10 and 7 for UcSoci.

Precision CN AA RA Katz SRW SPM PBSPM
Fast 
PBPSM

Hypertext 0.0959 0.1050 0.1005 0.0959 0.1187 0.0984 0.2128 0.2194

Haggle 0.1786 0.1888 0.1939 0.2041 0.2194 0.2928 0.3475 0.3760

Infec 0.0233 0.1163 0.1814 0.0233 0.3023 0.1949 0.3210 0.3070

UcSoci 0.0138 0.0153 0.0138 0.0138 0.0046 0.0298 0.0584 0.0574

Table 1. Precision of different methods for four networks. All the results are calculated under the optimal cases 
by adjusting parameters if any. The data in bold face are averaged over ten realizations with the same pfresher and α.
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eigenvalues. Taking Hypertext as example, Fig. 3(a) plots the precision for various m in Eq. (9). Compared  
with SPM, the curve presents significant improvements and achieves the best at m = 1, meeting the  
effectiveness of Eq. (9). Figure 3(b) gives the differences between two adjacent eigenvalues λ λ= | | − | |+gm m m 1  

λ λ λ| | > | | > … > | | .( )n1 2  The distinct g1 indicates a huge gap between λ1  and λ2 , while the other gaps (m ≥ 2) 
are all close to 0, suggesting that the huge gap g1 induces the decline of precision when m > 1. Then, we choose m = 1 
as the optimal value for Hypertext, analogously, the values for Haggle, Infec and UcSoci are respectively deter-
mined as m = 2,19,2 after which the gm approaches to 0 approximately. In consequence, it only requires O(n2) time 
to calculate the top-m eigenvalues and corresponding eigenvectors, and the reconstruction of similarity matrix 
(Eq. 9) needs O(m × n2) time. To reduce the randomness, the fast PBSPM repeats the random perturbation for ten 
times and obtains the averaged similarity matrix with O(10 × (mn2 + n2)) time. Hence, with m n and the 
increase in size n, the time complexity of fast PBSPM is O(n2) in contrast with the time complexity O(n3) of 
PBSPM and SPM, where the decomposition and reconstruction consume O(n3) time. Besides, the time complex-
ity is O(n2) for local similarity based methods, such as CN, RA, AA, and O(n3) for Katz and SRW.

Table 1 and Table 2 list the precision values and computation time of different link prediction algorithms. 
Obviously, the proposed methods achieve remarkable improvements, at most 84.84% for Hypertext, 28.42% for 
Haggle, 6.19% for Infec, 95.97% for UcSoci. In spite of this, PBSPM suffers from the huge computational cost that 
limits its extensive applications. Fast PBSPM, a well trade-off of computation complexity and accuracy, has the 
reasonable computational cost and the high accuracy. Due to the repeated steps in experimental procedures, the 
fast algorithm still consumes more time than some traditional predictors with the same time complexity. 
Additionally, the attractors ignored by the fast algorithm contain some secondary information that may either 
improve the accuracy as useful information or deteriorate the performance as network noise, hence, the precision 
slightly fluctuates around that of PBSPM. In general, the proposed methods show the high robustness because of 
the well performance for disparate networks, while other baselines give poor predictions for some networks. 
Apart from precision improvements, we also try to quantify the physical difference between the age of links 
selected by various methods, which can be comprehended as the average popularity of endpoints = ∑

+

|⁎
s

s s

E2
i j

P
 if 

edge eij is selected by a certain predictor. According to Table 3, links selected by the proposed methods are much 
older than the others; that is, the potential links prefer to form between the active nodes in the earlier future.

In the following, we mainly focus on the performance of SPM and PBSPM to explore underlying reasons of 
the improvements. To figure out the effect of popularity, four typical nodes from the training set of Hypertext, the 
large-degree node 1 and 3 (k1,training = 78,s1 = 0.051;k3,training = 93,s3 = 0.032), and the active node 91 and 113 
(k91,training = 29,s91 = 0.289;k113,training = 14,s113 = 1) are chosen to analyse their predicted connections and corre-
sponding variation of attractiveness. Figure 4 plots the predicted future links attached to selected nodes by SPM 
and PBSPM when pfresher = 0.05 and α = 9. After that, the principal eigenvector x1 of AR and the advanced ′x1  under 

=0.35

=34.37

Figure 3. Precision versus m and gap λ λ= − +gm m m 1  for Hypertext. λm is the eigenvalue of adjacent 
matrix AT. Panel (a) shows the performance of Eq. (9) on various m ∈ [1, 30] with fixed pfresher = 0.05 and α = 9. 
Each data point is obtained over ten simulations. Panel (b) shows the difference gm between λm  and λ +m 1 . 
g1 = 34.37 is distinct and the others are all close to 0.

Time(ms) CN AA RA Katz SRW SPM PBSPM
Fast 
PBPSM

Hypertext 1.02 1.12 1.08 1.51 1.95 20.3 20.51 15.73

Haggle 2.25 2.58 2.54 3.08 4.78 50.45 51.62 28.86

Infec 5.62 6.22 5.95 7.39 11.4 175.71 179.15 92.8

UcSoci 204.27 239.23 228.62 272.06 856.08 15200.76 15902.53 1122.95

Table 2. Computation time of different methods for four networks. All the results are averaged over ten runs on 
AMD R7 computer with MATLAB R2016b and 8GB RAM.
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the optimal case are calculated to quantify the attractiveness for the most weighted attractor. In addition, the 
principal eigenvector also characterizes the ranking of nodes, i.e. the importance34, 35. In Fig. 4(a), node 1 and 3 
(x1,1 = 0.1715,x1,3 = 0.1899) with the high importance are much more attractive than node 91 and 113 (x1,91 =  
0.0648,x1,113 = 0.0329), especially, node 113 with the lowest importance has no connections at all. Contrastingly, 
the high popularity enhances the active nodes ( ′ = . ′ = .x x0 1158, 0 19231,91 1,113 ) and results in the burst of links 
connecting to the them in Fig. 4(b), notably the most active node 113. In summary, nodes with the higher popu-
larity are emphasized by PBSPM to attract much more links, whereas the inactive despite their importance are 
weakened to reduce connections.

The above figures conduce to the understanding of how popularity imposes effects on several typical nodes, 
but note that, it is a rational speculation that the improvements must result from the advanced attractiveness of all 
nodes. As above argued, principal eigenvector denotes the attractiveness for the most weighted attractor. Because 
λ λ+ ∆ x x( )( )T1 1 1 1  occupies the main body of Ã, neglecting constant term Δλ1 + Δλ1, similarity ãi,j is mainly 

determined by eigenvector x1. The Pearson correlation coefficient (CC) between principal eigenvector and degree 
in the probe set, holistically reflecting the extent to which the attractiveness x1,i coincides with real degree incre-
ment ki,probe, is computed as follows,

∑ δ δ
=







− 











− 



=
cc

n
x x k k1 ,

(10)i
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i i

x

i probe i probe
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1, 1, , ,
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where x i1,  and ki probe,  are the means of x1,i and ki,probe. The CC between advanced ′x1  and degree in the probe set is 
obtained similarly. Table 4 lists the variation of CC after the addition of popularity and the coupling influence Δλ1 
averaged over ten independent perturbations. The positive ΔCC of four networks suggest attractiveness of some 
nodes are corrected to meet the degree increment in the future. Furthermore the positive Δλ1 also strengthens 
the improvements of correlations. As a result, the popular nodes are assigned more connecting opportunities to 
promote the precision.

Precision CN AA RA Katz SRW SPM PBSPM
Fast 
PBPSM

Hypertext 0.0411 0.0420 0.0445 0.0407 0.0509 0.0420 0.2115 0.2243

Haggle 0.0508 0.0513 0.0518 0.0488 0.0489 0.0609 0.1313 0.1265

Infec 0.0275 0.1228 0.2180 0.0275 0.4511 0.2148 0.7901 0.8145

UcSoci 0.0611 0.0666 0.0861 0.0617 0.1498 0.0672 0.4407 0.4051

Table 3. Average age of links selected by predictors. The bold data are averaged over ten runs and obtained 
under the optimal parameters.

Figure 4. Predicted connections of large-degree node 1, 3 and active node 91, 113 in Hypertext. Only the 
selected nodes and their neighbors are plotted, and the connections are the subset of the top-EP  predicted links. 
Panel (a) shows the connections predicted by SPM. Node 1 and 3 are much more attractive than node 91, and 
node 113 is not presented because of no connections. Panel (b) shows the connections predicted by PBSPM. The 
active node 91 and 113 attract numerous nodes, which gives rise to the explosive growth of edges.

Networks Hypertext Haggle Infec UcSoci

ΔCC 0.28 0.0582 0.3092 0.1155

Δλ1 4.1822 4.79 1.86 4.2183

Table 4. Variation of correlation coefficient ΔCC and coupling influence Δλ1. Each data is averaged over ten 
perturbations.
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Eventually, to demonstrate the feasibility of the proposed methods in practical applications, we compare the 
fast PBSPM with time series (TS) based methods on continuous temporal networks, which have been effectively 
applied to the temporal link prediction36–38. For each network, the dataset is divided into TN snapshots 

...G G G( , , , )T1 2 N
 with the length of time period Plength = 7 days. Setting a specified time window T = 5, we use the 

graph series (Gt, Gt + 1, …, Gt + T − 1) and its reduced static graph Gt~t + T − 1 to predict the links that will occur in 
Gt + T (t = 1, 2, …, TN − T). Then the popularity of each node is calculated as:

= = .+ −

+ −~

s
k

k
k
k (11)

i
i G

i G
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i all

,

,

,

,

t T

t t T

1
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During the evolution, certain mechanisms drive the network organization regularly and the structural features 
keep relatively stable. Hence, we obtain the optimal α and m by the known networks observed between the time 
period 1 ≤ t ≤ 6 (G1~5 as the training set, G6 as the probe set) and apply them to the subsequent predictions. Figure 5 
shows the precision at continuous time steps and the average accuracy of different methods. For LKMLR, though 
the fast PBSPM falls behind sometimes, its average value shows a slight advantage in precision (Fig. 5(a) (c)).  
For Wiki, not only does the fast PBSPM gain the upper hand at any time, but it achieves much higher average 
accuracy compared with TS based methods (Fig. 5(b) (d)). These experimental results demonstrate that the fast 
PBSPM has prospective applications in evolving networks.

Discussion
In this paper, we propose the PBSPM and its fast algorithm to predict future links. The main contribution is to 
investigate the popularity (activeness) of nodes in real-world evolving networks and apply it to link prediction. 
Unlike previous works that calculate temporal effects with complex theories, we infer the popularity of each 
node by its recently active edges. Then we propose a hypothesis that the future network is influenced by both 
existing structure and popularity of nodes. By introducing popularity into perturbation method, PBSPM could 
distinguish active and inactive historical important nodes, and prefer to predict new edges attached to active 
nodes. Subsequently, the fast method is proposed to get rid of the high computation complexity. Experimental 

Figure 5. Precision at different time steps and their average values. Gt~t + T − 1(Gt, Gt + 1, …, Gt + T − 1) and Gt + T 
play the role of the training set ET and probe set EP. Panel (a) and panel (b) show the precision values at different 
time steps for LKMLR and Wiki. The red curves are respectively obtained by the fast PBSPM with α = 2 and 5, 
m = 2 and 2. The other results are obtained under optimal cases by different forecasting models. Panel (c) and 
panel (d) give the average precision values of different methods for the two networks.
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results on real-world evolving networks reveal that compared with traditional methods, the proposed methods 
achieve better performance in precision and robustness. Besides, further experiments are conducted to uncover 
the underlying reasons of the improvements.

Definitely, the performance of proposed methods largely depend on the popularity of each node. In other 
words, the popularity based methods are more applicable for the networks with obvious temporal effects, where 
the popularity metric can effectively quantify the popularity of each node. Hence, another important issue is that 
improving popularity performance would enhance the precision of link prediction, which is the future work. 
Since our work mainly explores prediction in evolving networks, it has possible applications in traffic prediction, 
airline control, recommendation of social network, and so on.

Methods
Experimental procedures. To predict the future links of evolving networks with PBSPM, there are five 
detailed steps to follow:

Step 1: We firstly divide the network into the training set ET and the probe set EP based on the birth time of 
each edge, the corresponding adjacent matrix are denoted by AT and AP.
Step 2: The training set is further divided into the old set and the fresh set to calculate the popularity via Eq. (2)  
or Eq. (11).
Step 3: We perturb the training set by randomly removing a small fraction pH = 0.1 of edges ΔA, obviously, 
AT = AR + ΔA.
Step 4: We decompose the matrix AR and obtain the ′Ã  via Eq. (7) and Eq. (8).
Step 5: Repeat step 3 and step 4 for ten times. In other words, we implement the perturbations for ten times to 
obtain the averaged ′Ã  where the score 〈 ′ 〉ã ij  represents the existent likelihood of the link between node i and 
j. Finally, non-observed edges with the top-EP  scores are chosen as potential future edges.

Data description. In this work, six datasets are considered to evaluate the performance of algorithms. (1) 
Hypertext 2009 (Hypertext): a network of face-to-face contacts of the attendees of the ACM Hypertext 2009 con-
ference from June 30 to July 1, 2009, including 113 nodes and 2196 unique links39. (2) Haggle: an undirected net-
work representing contacts between people measured by carried wireless devices40, including 188 nodes and 1947 
unique links. The time span is 4 days. (3) Infectious (Infec): a network describing the face-to-face behavior of 
people during the exhibition INFECTIOUS: STAY AWAY in 200939, including 301 nodes and 2145 unique links. 
The time span is 8 hours. (4) UC Irvine messages (UcSoci): a directed network of messages between the users of 
an online community of students from the University of California, Irvine41, including 1692 nodes and 13037 
unique links. The dataset spans from April 15 to October 25, 2004. (5) Linux kernel mailing list replies (LKMLR): 
a communication network of the Linux kernel mailing list. The data considered in experiments is from January 
to June, 2013, including 2907 nodes and 78955 links. (6) Wikipedia elections (Wiki): a network of users from the 
English Wikipedia that voted for and against each other in admin elections. The data considered in experiments 
spans from October, 2005 to April, 2006, including 2309 nodes and 23707 links42.

To simplified the problem, we ignore the direction and weighted of links, and remove the isolated nodes. 
What is more, the networks are divided into historical training set and future probe set only according to the 
timestamps that attach to edges.

Evaluation metric. AUC (Area Under the receiver operating characteristic Curve) and Precision are two 
standard metrics used to measure the link prediction algorithm43, 44. The former randomly compares the score 
of a missing link with a non-existent link to evaluate the performance. The latter focuses on the links with top-L 
scores. When dealing with highly skewed datasets, the precision always gives a more informative picture of algo-
rithms’ performance45. Hence, We choose Precision index as the metric to evaluate the accuracy of the proposed 
method and other baselines. Precision is defined as the ratio of links predicted accurately to all links selected. 
Namely if we select top-L links in the all ranked non-observed links and only Lr links are predicted correctly in 
the probe set EP, then the accuracy of predictor follows

= .Precision L
L (12)
r

In our experiments, we select =L EP  and count how many of top-EP  links really exist in the probe set.

Baselines. For comparison, we briefly introduce five traditional algorithms based on all three kinds of struc-
tural similarity.

 (1) Common Neighbors (CN), related to the concepts of the triadic closure, is the most well-known method 
with an assumption that two target points tend to connect with each other if the new connection may 
produce much more triangles in the graph.

∩= Γ Γs x y( ) ( ) , (13)xy
CN

where Γ(x) is the set of neighbors of node x and ∩Γ Γx y( ) ( )  represents the set of common neighbors of x 
and y.
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 (2) Adamin-Adar (AA), advanced from CN, restricts the contributions of common neighbors by introducing a 
penalty factor, i.e., the logarithm of reciprocal of their degree.

∑
∩

=
∈Γ Γ

s
k

1
log

,
(14)

xy
AA

z x y z( ) ( )

where kz denotes the degree of common neighbor z.
 (3) Resource Allocation (RA), motivated by transferring resource between two unconnected nodes, views the 

common neighbor as the intermediary of which the transfer capability equals to the reciprocal of degree of 
common neighbors.

∑
∩

= .
∈Γ Γ

s
k
1

(15)
xy
RA

z x y z( ) ( )

 (4) Katz index, based on global information of network, counts all the paths connecting two endpoints with 
weakening the contributions of longer paths exponentially:

∑α= ⋅ .
=

∞
s paths

(16)xy
Katz

l

l
x y
l

1
,

When α λ< 1/ max, it can be rewritten as:

α= − ⋅ −−S I A I( ) , (17)1

where I is the identity matrix, α > 0 is the tunable parameter, λmax is the largest eigenvalue of the adjacent 
matrix A.

 (5) Superposed Random Walk (SRW) considers the summation of local random walks within t steps and 
degree of two endpoints to emphasize the local properties in real networks26.

∑ π τ π τ= +
τ=

s t q q( ) [ ( ) ( )],
(18)xy

SRW
t

x xy y xy
1

where =qx
k
E2
x  denotes the initial distribution of resources and πxy(τ) represents the transfer probability 

from x to y.
 (6) Time series based methods explore the evolution of topological metrics to predict the future links37. It 

follows the steps below:

Step1: Choose a static-structure method (e.g. CN, RA, Katz, etc);
Step2: Establish the time series by calculating the similarity between unconnected nodes in each time 
period;
Step3: Compute the final score of unconnected nodes with a forecasting model (e.g. Moving Average, Liner 
Regression, Simple Exponential Smoothing, etc);
Step4: Measure the algorithms with future links in the next time period.
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