2,661 research outputs found

    Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing

    Get PDF
    Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Although many methods for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still difficulties in batch-type processing since power load units are not directly adjustable and nonlinearly depend on production planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a production scheduling optimization model for ELD is proposed under TOU pricing, in which the objective is to minimize electricity costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multi-objective production scheduling algorithm is developed to obtain Pareto-optimal solutions, and then TOPSIS based multi-criteria decision-making is performed to recommend an optimal solution to facilitate filed operation. Experimental results and analyses show that the proposed method cuts electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show that the proposed method has effect on peak load regulation of power grid.Comment: 13 pages, 6 figures, 4 table

    Experimental Research on Corrosion-Induced Cracking Monitoring Based on Optical Fiber Sensor

    Get PDF
    Corrosion-induced cracking is a widely existent issue for coastal infrastructure, which leads to its advanced failure. The monitoring of corrosion-induced cracking is an important means of evaluating its influence on structure normal use and safe operation. However, traditional sensors such as strain gage are unsuitable to embed into concrete and to record long-term strain of concrete caused by steel bar corrosion. The optical fiber sensor, Brillouin Optical Time Domain Analysis (BOTDA) can effectively avoid the undetected phenomenon existing in point-wise test method, and it has the characteristic of automated monitoring. The optical fiber sensor is also electrical insulation and anti-electromagnetic interference; so it is suitable for detecting the corrosion-induced cracks. In this article, experimental research on corrosion-induced crack monitoring based on BOTDA is introduced. The distributed optical fiber is embedded into concrete around the steel bar to record expansion force of concrete. An accelerated corrosion test is performed to investigate the relationship between tiny geometrical changes of steel bar and concrete expansion force. Different rates of corrosion current are applied to the specimen. The accelerated corrosion test approved that the optical fiber sensor can effectively monitor the whole process of corrosion-induced cracking

    Delay-Compound-Compensation Control for Photoelectric Tracking System Based on Improved Smith Predictor Scheme

    Get PDF

    PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows

    Full text link
    Point cloud upsampling aims to generate dense point clouds from given sparse ones, which is a challenging task due to the irregular and unordered nature of point sets. To address this issue, we present a novel deep learning-based model, called PU-Flow, which incorporates normalizing flows and weight prediction techniques to produce dense points uniformly distributed on the underlying surface. Specifically, we exploit the invertible characteristics of normalizing flows to transform points between Euclidean and latent spaces and formulate the upsampling process as ensemble of neighbouring points in a latent space, where the ensemble weights are adaptively learned from local geometric context. Extensive experiments show that our method is competitive and, in most test cases, it outperforms state-of-the-art methods in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency. The source code will be publicly available at https://github.com/unknownue/pu-flow

    Joint Design of Access and Backhaul in Densely Deployed MmWave Small Cells

    Full text link
    With the rapid growth of mobile data traffic, the shortage of radio spectrum resource has become increasingly prominent. Millimeter wave (mmWave) small cells can be densely deployed in macro cells to improve network capacity and spectrum utilization. Such a network architecture is referred to as mmWave heterogeneous cellular networks (HetNets). Compared with the traditional wired backhaul, The integrated access and backhaul (IAB) architecture with wireless backhaul is more flexible and cost-effective for mmWave HetNets. However, the imbalance of throughput between the access and backhaul links will constrain the total system throughput. Consequently, it is necessary to jointly design of radio access and backhaul link. In this paper, we study the joint optimization of user association and backhaul resource allocation in mmWave HetNets, where different mmWave bands are adopted by the access and backhaul links. Considering the non-convex and combinatorial characteristics of the optimization problem and the dynamic nature of the mmWave link, we propose a multi-agent deep reinforcement learning (MADRL) based scheme to maximize the long-term total link throughput of the network. The simulation results show that the scheme can not only adjust user association and backhaul resource allocation strategy according to the dynamics in the access link state, but also effectively improve the link throughput under different system configurations.Comment: 15 page

    Joint Optimization of Resource Allocation and User Association in Multi-Frequency Cellular Networks Assisted by RIS

    Full text link
    Due to the development of communication technology and the rise of user network demand, a reasonable resource allocation for wireless networks is the key to guaranteeing regular operation and improving system performance. Various frequency bands exist in the natural network environment, and heterogeneous cellular network (HCN) has become a hot topic for current research. Meanwhile, Reconfigurable Intelligent Surface (RIS) has become a key technology for developing next-generation wireless networks. By modifying the phase of the incident signal arriving at the RIS surface, RIS can improve the signal quality at the receiver and reduce co-channel interference. In this paper, we develop a RIS-assisted HCN model for a multi-base station (BS) multi-frequency network, which includes 4G, 5G, millimeter wave (mmwave), and terahertz networks, and considers the case of multiple network coverage users, which is more in line with the realistic network characteristics and the concept of 6G networks. We propose the optimization objective of maximizing the system sum rate, which is decomposed into two subproblems, i.e., the user resource allocation and the phase shift optimization problem of RIS components. Due to the NP-hard and coupling relationship, we use the block coordinate descent (BCD) method to alternately optimize the local solutions of the coalition game and the local discrete phase search algorithm to obtain the global solution. In contrast, most previous studies have used the coalition game algorithm to solve the resource allocation problem alone. Simulation results show that the algorithm performs better than the rest of the algorithms, effectively improves the system sum rate, and achieves performance close to the optimal solution of the traversal algorithm with low complexity.Comment: 18 page
    corecore