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Abstract The as-cast AuSn20 eutectic alloys prepared by
four different solidification pathways have been investigated
in terms of the microstructure and the high-temperature
compressive behaviors. The primary phases appeared in the
four alloys are very sensitive to the cooling rate, which
decrease in the size and the volume fraction as the cooling rate
increases. The morphologies of the primary ('-AusSn phase
are in dendritic at low cooling rate and change to rosette-like
at high cooling rate. When the cooling rate is about 3.5x
10* K/min, the primary (-AusSn can be suppressed but
small 5-AuSn particles appear instead as the primary phase.
The compressive behaviors at 220°C exhibit a low yielding
stress and a long stress platform for the alloy prepared by
injection casting with a copper crucible, which indicates an
advantageous processing route for the production of the
AuSn20 strips or foils.

Keywords AuSn20 alloy - Primary phase - Eutectic
solidification - Rapid solidification - Hot working
Introduction

Au-20 wt.% Sn eutectic solder alloy (denoted as AuSn20
hereafter) is extensively used in high power electronics and
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optoelectronics packaging due to its high-temperature
performance, high mechanical strength, high electrical,
and thermal conductivity [1-5]. Many studies of the
AuSn20 solder are focusing on the soldering process, the
microstructure evolution in the soldering joints [6, 7], and
the solder alloy’s performance [8—10]. Considering the
manufacturing of this alloy, some unsolved problems still
remain, such as the microstructure evolution in the
processing and the mechanical behavior of the bulk
AuSn20 solder alloy. It is well known that the miniatur-
ization of microelectronic packages requires the bulk
AuSn20 solder alloy to be very thin (usually 0.015-
0.1 mm). Thermal rolling and/or room temperature rolling
are usually preferred methods to reach the goal because the
better surface quality of the thin alloy ribbons can be
achieved by these processing routes. Generally, initial
microstructure of the bulk AuSn20 alloy plays an important
role in the rolling process. According to Au—Sn binary alloy
phase diagram [11-13] as shown in Fig. 1, AuSn20 alloy
should reveal a eutectic microstructure consisting of ('-
AusSn phase and 8-AuSn phase at room temperature. Both
(' and § are intermetallics with very hard and brittle nature.
They lead to difficulties in the manufacture of the AuSn20
solder strips or foils. In practice, the nonequilibrium
solidification usually results in forming primary dendritic
(-AusSn phase [6, 10]. The length scale and morphology of
the dendrites are very critical to the mechanical properties
of the alloy, which are always adverse to the manufacturing
process. In order to refine the solidified microstructure,
different solidification techniques can be used in the
production of the bulk AuSn20 alloy. With those techniques
various cooling rates during the solidification can be
achieved. It is expected that rapid solidification [14, 15]
will result in refined microstructure, extended solubility,
reduced microsegregation, and forming metastable phases.
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Fig. 1 Phase diagram for Au—
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The various initial microstructures must exhibit different
plasticity and workability, which influence the manufactur-
ing process of the thin alloy foil. This investigation will
focus on the microstructure evolution and the compressive
deformation behaviors of the as-cast AuSn20 alloy. Several
casting methods are chosen because they can achieve
different cooling rates. Our findings in this study are useful
for optimizing the production of the AuSn20 solder foils.

Experimental procedures

The initial AuSn20 alloy was prepared in an electromag-
netic induction furnace under argon atmosphere by melting
pure gold plates (in purity of 99.999%) and tin particles (in
purity of 99.99%) in a graphite crucible. Three different
solidification techniques together with two kinds of mold
with 5 mm in diameter were used to realize four different
cooling rates. The detailed description and related data are
listed in Table 1. A small piece of the alloy (about 0.06 g)
was cut from the ingot for differential scanning calorimetry

30 40 50 60 70 80 90 100
Atomic Percent Tin Sn

(DSC) measurement and the DSC traces were obtained
from 2920 MDSC under 1, 10, and 20 K/min, respectively.
The samples for microstructure observation were cut at
3 mm from the bottom of the as-cast cylindrical ingots, and
then prepared by standard metallographic technique without
etching. The backscattering electric images were obtained
by using a scanning electron microscopy (SEM) JEOL-
JSM6460 with energy dispersive X-ray spectroscopy
(EDS). The X-ray diffraction (XRD) patterns were taken
from the cross-sections of each ingot by using a Bruker D8-
ADVANCE diffractometer with CuK o radiation.

The microhardness measurements at room temperature
were carried out by using a Vickers system, for which 100 g
load and 15 s duration were applied and at least five
random points were measured for each sample. The
cylindrical specimens for the compressive test were
prepared, which are 5 mm in diameter and 6 mm in length.
Before testing, the specimens were heated to 220+2°C in a
furnace and held for 5 min for homogeneity. The high-
temperature compressive tests were performed by using an
AG-100KNA ShimaDzu testing machine with a cross-head

Table 1 Four different solidification pathways and the corresponding cooling rates

Name Casting methods Cast mold Casting Estimated cooling
temperature (°C) rate (K/min)

CcC Conventional casting Graphite 330+£5 2.4x10

IC Injection casting Graphite ~1100 42x10?

ICC Injection casting Copper ~1100 9.0x10°

SC Suction casting Copper with ~1700 3.5x10*

water cooling
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speed of 5x10 %/s. The maximum height reduction of the
specimens is above 70%. After the test, the compressed
disks were cut from the center parallel to the compression
direction and the deformed microstructures were observed
using SEM.

Results

The phase transition behavior under different heating
and cooling rates

Figure 2 shows the melting and solidification behaviors of
the AuSn20 alloy under different heating/cooling rates. The
DSC traces reveal very similar onset temperatures in the
heating routes with three different rates as shown in Fig. 2a.
The two endothermic peaks are determined at about 190.1°C
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Fig. 2 DSC traces of AuSn20 eutectic alloy under different heating/
cooling rates: a heating and b cooling

and 290°C. The first peak corresponds to the reverse
peritectoid reaction (+6—( or ('—(+d depending on the
local Sn concentration [11-13]; the second peak corresponds
to the melting reaction. The endothermic reaction around
190°C implies that the ordered-disordered transition ('—( is
a first order phase transition. Some difference in the end
temperatures of the solid—solid transition ({'—() between
the different heating rates as shown in the inset in top left
corner of Fig. 2a verifies that the structure transition is time-
dependence.

Upon cooling, a sharp exothermic peak can be detected
as shown in Fig. 2b, corresponding to the eutectic reaction
L—(+5. But the following exothermic peritectoid reaction
(+6— (' around 190°C cannot be detected. The start
temperature of the solidification is significantly dependant
on the cooling rates. For clarity, all the characteristic
temperatures are summarized in Table 2. The supercooling
temperature is defined as the difference between the end
melting temperature and the onset solidification tempera-
ture. The higher cooling rate results in a greater super-
cooling.

As-cast microstructures under four different solidification
pathways

Figure 3 presents the as-cast microstructure of the AuSn20
alloy under four different solidification pathways. The
primary large dendrites with developed secondary arms
(white phase) are evident for the CC pathway as shown in
Fig. 3a, which are confirmed to be ('-AusSn phase
according to the EDS analysis (Table 3). The matrix is
eutectic phase with typical irregular lamellar structure as
shown in Fig. 4a. It is undoubted that the white phase is
('-AusSn and the dark phase is 6-AuSn in the eutectic
microstructure (Fig. 4a). For the IC pathway fine primary
dendrites (('-AusSn phase) distribute in the eutectic matrix
as shown in Fig. 3b. It is clear that the IC pathway
provides higher cooling rate than the CC, and results in
finer primary dendrites and eutectics. In addition, the
volume fractions of the primary dendrites evidently differ
between the two methods (Fig. 3a and b). Higher cooling
rate (IC) leads to smaller volume fraction of the primary
dendrites (compared with CC). In virtue of the image
analysis, the volume fractions of the primary dendrites are
estimated to be 30+£5% for CC and 15+5% for IC,
respectively. When the ICC pathway (with much higher
cooling rate) is applied, the primary dendrites are much
finer as shown in Fig. 3c. Their volume fraction can be
estimated to be 7£3% which is much smaller than that of
IC or CC. It is noticeable that the dendritic morphology of
ICC reveals a different feature from other two samples (IC
and CC). Such ripened equiaxed dendrites (Fig. 3¢) was
named as “rosette” [16].
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Table 2 Characteristic temperatures of AuSn20 alloy determined from the DSC traces

Heating/cooling Heating Cooling
Rate (K/min)

Solid—solid transformation Solid-liquid transformation Liquid—solid transformation

Ts (°C) v (°C) AH (J/g) Ts (°C) Tm (°C) AH (J/g) Ts (°C) AH (J/g) AT (°C)
1 179.4 190.5 1.50 287.1 289.5 28.77 273.4 29.00 16
10 181.3 190.0 1.45 285.8 288.2 29.17 261.8 28.63 26
20 178.6 190.2 1.56 286.8 289.4 28.15 256.7 27.25 33

When SC pathway with extremely high cooling rate is
applied, the primary phase ('-AusSn is completely re-
strained. The 0-AuSn instead nucleates and grows in the
initial solidification, forming irregular polygonal particles
as shown in Fig. 3d. The size of the primary §-AuSn
particles is in about several microns, and their volume
fraction can be estimated to be about 5+3%. A careful
observation has confirmed that the small particles disperse
in the eutectic matrix homogeneously through all the
section of the as-cast cylinder. Figure 4b shows some
details of the eutectic structure where the primary 5-AuSn
particles (in dark) act as nucleuses of the eutectic growth
and lead to a radial-columnar or lamellar eutectic structure.
Compared with the CC (Fig. 4a), the lamellar spacing of the
SC eutectic structure is smaller, indicating that the higher
cooling rate also refines the eutectic microstructure.

Considering the total phase percentages in the as-cast
AuSn20 alloy, one can easily estimate the (-AusSn phase in
about 65% (total of the primary phase and that in the eutectic,

Fig. 3 As-cast microstructures
of the AuSn20 alloy showing
different primary phases under
different solidification pathways:
a CC, b IC, ¢ ICC, and d SC

@ Springer

supposing 50% (+50% & in the eutectic) and 5-AuSn in
about 35% for the CC alloy. The {'-AusSn phase decreases in
total percentage as the cooling rate increases (such as IC and
ICC alloys) and the 5-AuSn phase tends to increase. For the
SC alloy cast under extremely high cooling rate, the
percentage of the 6-AuSn phase (about 52.5%) becomes
larger than that of the (’-AusSn phase (about 47.5%). XRD
patterns (shown in Fig. 5) have evidently verified such
relationship between the solidified phases and the casting
pathways (cooling rates). The strong peaks correspond to the
('-AusSn phase for the CC alloy (Fig. 5), suggesting that the
('-AusSn phase is dominant. But for the SC alloy, the strong
peaks corresponding to the 6-AuSn phase suggest that the -
AuSn is dominant in the microstructure.

Microhardness at room temperature

Although both (’-AusSn and 6-AuSn are intermetallics with
hard and brittle nature, the mixture of the two phases with
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Table 3 Concentrations (wt.%) of the primary phases measured by
EDS analysis

Casting methods Au Sn Suggested phases
cC 90.3 9.7 {'-AusSn

IC 90.5 9.5 {'-AusSn

ICC 91.1 8.9 ('-AusSn

SC 62.7 37.3 5-AuSn

different percentages and various grain geometry and size
may result in very different mechanical properties. The
microhardness of the as-cast AuSn20 alloys tested at room
temperature is listed in Table 4. Some reported data [9, 10,
17, 18] are also collected in the table for comparison. As
expected CC alloy exhibits the lowest hardness (HV138)
and ICC alloy has the highest hardness (HV219) in the
three tested samples. Since the 100 g load was applied in
Vickers measurements, the width of the indentation was
large enough to span many eutectic domains and some
primary dendritic/rosette phases. Each tested hardness value
is the average of the local eutectics and the primary phase.
It is clear that the tested hardness depends on the local
eutectic microstructure and the phase hardness. In general,
eutectic phases with a very fine lamellar microstructure
have higher hardness than the primary phase. The CC alloy

Fig. 4 Eutectic microstructures of the as-cast AuSn20 alloy: a
irregular lamellar eutectics in CC alloy and b irregular equiaxed
eutectic grain in SC alloy

Relative Intensity

20 30 4‘0 50 6IO 7‘0 80
2 Theta, Degree

90 100

Fig. 5 XRD patterns of the as-cast AuSn20 alloys under different
solidification pathways

with the largest volume fraction of the primary phase
exhibits the lowest hardness, while the ICC alloy with the
smallest volume fraction of the primary phase exhibits the
highest hardness among the three tested samples. Besides,
the phases solidified under high cooling rate usually exhibit
higher hardness than that solidified under low cooling rate
because of the nonequilibrium solidification. This also
contributes to the tested hardness values.

Table 4 Microhardness values of the as-cast AuSn20 alloys

Source Cooling rates / status Hardness (HV)

CcC 2.4x10 K/min 138+4

IC 4.2x10% K/min 20745

ICC 9.0x10* K/min 21943

[9] Air cooling ~173 (global microhardness)

[10] Slowly solidification 177£7,10 g

(¢'+5 eutectics)

14343, 10 g (C'-AusSn)
107+1, 10 g (5-AuSn)

[17] Solid-state aging 123+19 ({'+d eutectics)

of diffusion couples 236+19 ({-AusSn)

104+£6 (5-AuSn)

[18] Electrodeposition 211+£29 ({'+6 eutectics)

(fine grain) 178+16 ({'-AusSn)

199419 (5-AuSn)

Some published data are presented for comparison

@ Springer
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Fig. 6 High-temperature compressive stress—stain curves of the as-
cast AuSn20 alloys

Compressive behaviors at high temperature

The high temperature compressive tests were carried out at
starting temperature 220°C which is about 30°C higher than
the order—disorder transition temperature. The microstruc-
ture of the tested alloy is composed of primary (-AusSn
and eutectic (-AusSn+5-AuSn at the testing temperature.
The disordered (-AusSn has a Mg-type close packed
hexagonal structure which is supposed to be easily
deformed compared with the ordered ('-AusSn.

The high temperature compressive stress—strain curves
of the tested alloys exhibit typical three stage behaviors, i.e.
initial elastic strain, yielding and plastic strain accompa-
nying dynamic recrystallization, and the final densification
as shown in Fig. 6. We are amazed to see that the yielding
strength is 94 MPa for CC and 84 MPa for IC, but only
17 MPa for ICC. This suggests that the size and the volume
fraction of the primary phase (-AusSn play a significant
role in strengthening. If there is no primary phase in the
microstructure, the eutectics may exhibit very small
deformation resistance. Under this situation the AuSn20
alloy will become easily forged or rolled.

At the stage of the plastic deformation a distinct strain
softening occurs due to the dynamic recrystallization for the
CC and IC alloys, leading to a sharp decrease in the flow
stress. After then, a short stress platform appears followed
by a quickly stress increase (Fig. 6). In a different manner,
the ICC alloy exhibits a long low-stress platform in the
stress—strain curve, which indicates that the effect of work-
hardening is well balanced by the dynamic recrystallization.
Compared the ICC with the CC and IC, one can consider
that the primary phase counts for much in the stress—strain
behavior. For clarity, all the mechanical data determined
from the stress—strain curves are summarized in Fig. 7.
Obviously, the eutectic AuSn20 with little or without the
primary phase is highly advantageous to the rolling
processing in the strips or foils production because of its

@ Springer
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Fig. 7 Plot of the cooling rate to the characteristic compressive
properties at 220°C for the AuSn20 alloys

lower yielding stress, longer stress platform, and larger
plastic strain. After the severe plastic deformations, the
AuSn20 strips or foils can be improved in chemical
homogeneity, which provides good, steady package prop-
erties for the soldering applications.

Discussion
Primary phases for different solidification pathways

The crucial difference among the four solidification path-
ways is the cooling rate (Table 1). It is well known that the
solidified microstructure can be refined when a large
cooling rate is applied. The DSC measurements (Fig. 2b)
have validated that the large cooling rate induces a large
supercooling. According to the solidification principles
[19], the nucleation rate and the growth rate in the
supercooled melt are controlled by both thermodynamic
and kinetic conditions. Under small supercooling (normal
casting process, e.g., CC and IC in this study), the
diffusion-controlled dendritic growth depends on the cool-
ing rate. Its size becomes small as the cooling rate
increases, because the growing up of the dendrites is
kinetically suppressed in large cooling rate (Fig. 3b). Under
large supercooling (rapid solidification, e.g., ICC and SC in
this study), solidification occurs at very low temperatures,
so that the nucleation rate is significantly improved but the
grain growth is restrained due to the limited atoms
diffusion. The rapid solidification must results in very fine
primary phases (Fig. 3c and d) and fine eutectic structure
(Fig. 4b). These phenomena were also found in the reflow
joint of the AuSn20 solder [6] and other eutectic [14] or
hypereutectic alloys [20]. For quantitative description, the
measured characteristic sizes of the primary phases for the
four solidification pathways are presented in Fig. 8, which
clearly shows the significant cooling rate dependence of the
primary phases.
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Fig. 8 The characteristic sizes of the primary phases for the four
solidification pathways

Besides the size, the morphology of the primary phase is
also sensitive to the cooling rate. The developed first arms
of the dendrites will become short and tend to evolve into
the ripened equiaxed dendrites, i.e., rosette, as the cooling
rate increases from about 4.2x 10* K/min (IC) to about 9x
10° K/min (ICC). Based on these observations, a distinct
tendency can be depicted that as the cooling rate increases
the primary phase size and its volume fraction decrease, and
the developed dendrites become small dendrites and even
small rosettes. A critical cooling rate must exist under which
the primary phase disappears. This critical cooling rate can be
estimated between 9.0x10° K/min (corresponding to ICC
pathway) and 3.5x10* K/min (corresponding to SC path-
way) as illustrated with a dashed arrow in Fig. 1 according to
this study. Figure 9 has illustrated such evolution of the
primary phase in the AuSn20 alloy. These phenomena have
also been observed in other eutectic or hypereutectic alloys
[20, 21].

It is interesting that the 5-AuSn phase solidifies primarily
when the cooling rate is high enough to suppress (-AusSn,
e.g. SC pathway. The primary d-AuSn phase prefers growth
in faceted manner (insert in Fig. 3d). Because the primarily

Morphology dendrite (£’)—>rosette (§’)—>particle (8)
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Fig. 9 The cooling rate-dependence of the primary phases of the
AuSn20 alloy

solidification occurs under large supercooling, a high
nucleation rate is expected for the rapid solidification, which
contributes to the refinement of the microstructure. Unlike
dendritic growth with a continuous mode, the faceted grain
growing via noncontinuous mechanism has a slow growth
velocity, and then tends to form small particles (Fig. 3d).

Effect of the initial microstructure on the high temperature
compressive behaviors

It is well known that the yielding strength of metallic
materials depends on their microstructure. High cooling rate
during solidification generally leads to fine microstructure,
resulting in high yielding strength (Hall-Petch relation).
Besides, rapid solidification restrains atoms diffusion to
induce a high concentration of defects (e.g., voids,
dislocations, etc.) in the crystals, which can enhance the
deformation resistance and contribute to the yielding
strength. According to above discussions, the as-cast
AuSn20 alloys should exhibit yielding stresses at room
temperature in following turns:

occ < o1c < oycc (atroom temperature)

Although the room temperature compressive test cannot
be operated due to the brittle nature of the alloy, the
microhardness measurements (Table 4) at room temperature
have indirectly verified the above estimation. It is interest-
ing to find that the high temperature yielding strength under
compressive stress is in a reverse sequence (Fig. 6):

occ > O1c > O1cC (at220°C)

It is undoubted that some microstructure evolution has
occurred during the heating and the 5 min holding at 220°C.
According to Au—Sn binary phase diagram (Fig. 1 [11-13]),
the ordered—disordered transition (('—() has already fin-
ished at such high temperature. But this should not be the
crucial reason that induces such difference in the yielding
stress. The eutectic matrix is probably the source that can be
utilized to modulate the mechanical properties of the AuSn20
alloy. The lamellar eutectics have a thermodynamic tendency
of globularizing at high temperature because of the high
interfacial energy. The initial eutectics formed under different
supercooling, which are in different refinements of the
lamellar spacing (Fig. 4), have different driving force for
the eutectic evolution. Among the three alloys the ICC has
the largest driving force, thus induces the largest falling of
the yield stress (Fig. 6). Besides, the composite of the
primary dendrites and the eutectics can significantly improve
the yielding stress. The CC with the largest volume fraction
of primary dendrites has the strongest “composite-effect,”
thus exhibits the largest yielding stress (Fig. 6). In addition,
the average compositions of the eutectics are different
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among the three alloys due to different volume fractions of
the primary phases. This should also influence the eutectic
evolution and the yielding stress.

After yielding, the continuous plastic strain has induced
dynamic recrystallization in the eutectics. If the strain-
hardening is roughly balanced by the recrystallization a
stress platform can be maintained (ICC alloy shown in
Fig. 6). As the strain progresses, the dynamic recrystalliza-
tion impairs the “composite-effect” because the dendrites
are broken and inclined towards the plastic flow orientation
(Fig. 10a and b), so that a rapid decrease in the stress after
the yielding can be observed. When the “composite-effect”
is exhausted, a short stress platform appears (CC and IC
alloys shown in Fig. 6). For the ICC alloy, the small
“rosettes” have mixed with the recrystallized eutectic
matrix (Fig. 10c), there is almost no such “composite-
effect.” After the high temperature compressive test, all the
lamellar eutectics transform into a dual phases microstruc-
ture with granular grains (via globularization mechanism
[22]) where the 0-AuSn islands are isolated by the ('-
AusSn matrix as shown in Fig. 10d. Such globularization
behavior is a typical dynamic recrystallization [22].

So far, there are many eutectic alloys [23-26] which
were found to exhibit superplasticity at certain temperature
or conditions. Does the AuSn20 eutectic alloy also exhibit
superplasticity? If it does, in which conditions the super-
plasticity appears? This work has displayed the possibility
of superplasticity in AuSn20 eutectic alloy. The ICC alloy
with fine eutectic microstructure and little primary phase

Fig. 10 The oriented dendrites
and the recrystallized micro-
structure of the lamellar eutec-
tics after high temperature
compressive deformation. a CC,
b IC, ¢ ICC, and d the recrys-
tallized microstructure of the CC
eutectics

= Oriented dendrites

exhibits a longer low-stress platform at about 220°C, which
is promising to exhibit superplasticity. In the next work, the
special attention should be paid on the strain rate
dependence of the plasticity, restriction of the primary
phase, and refinement of the eutectic phases.

Conclusions

The AuSn20 eutectic alloy tends to form primary phase and
then eutectic phases during solidification. The primary
phase is very sensitive to the cooling rate. With the
conventional casting pathway by which the cooling rate is
about 24 K/min, the primary phase is in dendritic, and the
solidified microstructure is composed of the primary
dendritic ('-AusSn and the lamellar eutectic ('-AusSn+d-
AuSn. As the cooling rate increases, the primary dendrites
become small in both the size and the volume fraction, and
their morphology becomes rosette-like. If the cooling rate is
large enough (e.g., 3.5x10* K/min) the primary (’-AusSn
can be suppressed but small §-AuSn particles appear
instead as the primary phase.

The as-cast AuSn20 alloys exhibits three stage stress—
strain behaviors under compressive stress at 220°C, which
is the elastic strain, the yielding and the plastic strain
accompanying dynamic recrystallization, and the final
densification. Although the room temperature microhard-
ness of the alloys increases as the cooling rates increase, the
yielding stress at 220°C displays a significant decrease due

Seperated dendrite arms

Some trails of the rosette
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to the eutectics relaxation. The CC and IC alloys exhibit a
rapid stress falling after yielding because the “composite-
effect” impairs during the plastic strain. The ICC alloy
exhibits a very low yielding stress and a longer stress
platform because the strain-hardening can be well balanced
by the dynamic eutectic recrystallization. This finding
suggests that ICC pathway is beneficial to the production
of the AuSn20 strips or foils.
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