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Abstract 10 

This paper presents an experimental study on the application of the so-called artificial 11 

boundary condition (ABC) frequencies for structural damage identification. Aided by the 12 

corresponding sensitivity analysis, more suitable ABC frequencies can be selected for 13 

improved identification of structural damage. An overview of the theoretical background of 14 

ABC frequencies and their sensitivity formulation is provided first. An experimental 15 

programme involving model steel beams in the intact and damaged states for the 16 

measurements of ABC frequency is presented, and the extraction of the ABC frequencies is 17 

descried and discussed. The extracted ABC frequencies are selected in accordance with the 18 

sensitivity analysis and they are subsequently employed to identify the structural damage. 19 

Results demonstrate that, aided by the sensitivity-based selection procedure, the ABC 20 

frequencies can be used for practical identification of structural damage and both the damage 21 

location and severity can be determined with good accuracy. 22 

Key words: damage identification, ABC frequency, sensitivity analysis, genetic algorithm  23 

  24 



1. Introduction 25 

In recent years, a lot of studies have been devoted to structural health monitoring and damage 26 

identification with model-based methods, particularly the finite element (FE) model updating 27 

techniques [1-10]. Many FE model updating techniques have been demonstrated to exhibit 28 

satisfactory identification performance in the numerical studies. However, in physical 29 

structures, measurement and environmental noises often dictate that only a limited amount of 30 

modal data, including natural frequencies, mode shapes and damping ratios, may be available 31 

with acceptable accuracy [11,15], and this restricts the extent to which damage may be 32 

identified from a model updating procedure. 33 

Several studies have been conducted on structural damage identification using experimentally 34 

determined natural frequencies [2-4], and it has been found that damages in relatively simple 35 

structures, such as 1-dimensional beams, may be identified using the first few natural 36 

frequencies. In some latest studies (e.g. [10]), the natural frequencies of higher order modes 37 

have been used to identify the local damages in beam-like structures, and the results 38 

demonstrate that even small damages could be identified when higher order natural 39 

frequencies became available. However, for complex damage identification problems with a 40 

large number of variable parameters, using natural frequencies alone would not be sufficient, 41 

as the number of natural frequencies is still limited.  42 

Similarly, mode shapes may be measured with good accuracy for relatively simple cases [12-43 

14]; but even for simple structures problems can arise in measuring high modes if the 44 

structure is relatively stiff, or when significant nonlinearities are involved. Moreover, 45 

pronounced structural damage may cause variation of mode order and this can complicate an 46 

accurate determination of higher-order mode shapes. Therefore, it would be desirable if 47 



additional modal information can be generated within the lower-order mode region for the 48 

general damage detection and structural identification. 49 

In the above respect, alternative methods have been proposed to enhance the dataset of modal 50 

information for structural damage identification [16-19], including the incorporation of ABC 51 

frequencies which are essentially the perturbed natural frequencies of a structure with 52 

additional virtual supports. Several studies have been performed using ABC frequencies, as 53 

well as antiresonance frequencies, to identify structural damages, and results demonstrate that 54 

effective damage identification can be achieved with the use of such frequencies [20-25].   55 

Despite the above advancements, the performance of using ABC frequencies from real 56 

measurements for damage identification has not been systematically studied. Moreover, since 57 

a large variety of perturbed boundary conditions, i.e. the ABC pin supports, may be 58 

configured for the ABC frequencies, the inherent information with the ABC frequencies 59 

requires further investigation so that more suitable ABC frequencies can be selected to ensure 60 

better identification performance. However, only limited research in the literature has been 61 

devoted to the selection of ABC frequency for damage identification [23, 26].  62 

In this paper, an experimental investigation into the extraction and application of the ABC 63 

frequencies for structural damage identification, aided by the sensitivity analysis of the ABC 64 

frequencies, is presented. An overview of the background theory about ABC frequency and 65 

the theoretical formulation of the ABC frequency sensitivity is provided first. The experiment 66 

was performed on model steel beams in the intact and damaged states, and dynamic 67 

measurements were taken for the processing and extraction of the ABC frequencies. 68 

Extracted ABC frequencies are presented and discussed. Subsequently, the extracted ABC 69 

frequencies are selected in accordance with the sensitivity analysis for the incorporation in 70 

the FE model updating procedure to identify the structural damage. Results demonstrate that 71 



it is possible to extract ABC frequencies from the experimental, and aided with a sensitivity 72 

based selection procedure, the ABC frequencies can be used for the identification of 73 

structural damage effectively and both the damage location and severity can be determined 74 

with good accuracy. 75 

2. Theoretical background of ABC frequency 76 

Modal frequencies of a given structure with perturbed support conditions provide extra modal 77 

information which may be incorporated to enhance the response dataset for structural damage 78 

identification. The practicality of such an idea is hindered by the fact that imposing added 79 

supports physically on a structure is not normally feasible. Gordis [17, 20] introduced a 80 

theoretical approach by which a structure under a supposed set of additional pin supports can 81 

be derived from an incomplete frequency response function matrix measured from the 82 

original structure, without the need of actually imposing the additional pin supports, and 83 

hence the term of artificial boundary condition or ABC frequencies. Expressing the steady 84 

state response of a linear system at a forcing frequency   (rad/s) in the following form: 85 
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where k  and m are stiffness and mass matrices, x  and f  are vectors of generalized response 87 

and excitation amplitudes, respectively. Subscript '' m  represents measured coordinates or 88 

DOFs and subscript ''o  refers to the unmeasured DOFs (‘omitted coordinate set’ or OCS). 89 

The OCS is effectively a reduced system, where all the measured DOFs are restrained or 90 

pinned to the ground.  91 

Introducing the impedance matrix, mkZ 2 , Eq. (1) can be re-written as:  92 
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Assuming there exist no excitation on the omitted coordinates, i.e., fo=0, Eq. (2) can be 94 

rearranged as: 95 

))(( 1
momoomommm xZZZZf                                       (3) 96 

Thus: 97 

                                               (4) 98 

where is the generalized excitation at the measured coordinates or DOFs,  is the 99 

generalized response at these DOFs, and  is the frequency response function (FRF) 100 

matrix measured from the structure.  101 

From Eq. (4), it can be seen that at the natural frequencies of the OCS, 1
ooZ  is singular, so 102 

1
mmH  is also singular. This means that by identifying the singularities from the elements of 103 

1
mmH , one can determine the natural frequencies of the OCS, i.e., the frequencies of the 104 

structure as if it was physically pinned at the measured DOFs. The relationship can be more 105 

conveniently illustrated using an example shown in Fig. 1, where (a) shows the actual simply-106 

supported beam, (b) depicts a perturbed boundary condition with two additional pin supports 107 

at “i” and “j”, for which the modal frequencies are to be evaluated, and (c) shows the actual 108 

measurement settings. Instead of physically imposing the two additional pins as indicated in 109 

Fig. 1(b), the modal frequencies under such a boundary condition can be determined by 110 

measuring the (2x2) FRF matrix on the original beam at points “i” and “j” shown in Fig. 1(c), 111 

and subsequently identifying the singularities from the inverted FRF matrix.  112 

  113 



 114 

(a) Actual simply-supported beam 115 

 116 

(b) Implied perturbed boundary condition 117 

 118 

 119 

(c) Actual measurements for extraction of ABC frequencies 120 

Figure 1 Illustration of artificial boundary condition frequency measurement settings 121 

3. Overview of the sensitivity formulation and verification 122 

In this section, an overview of the theoretical formulation for the sensitivity of ABC 123 

frequencies is provided. In particular, the sensitivity of two-pin ABC frequencies and the 124 

underlying mode shape contribution [26] are discussed in connection with the selection of 125 

ABC frequencies for damage identification.  126 

3.1 Sensitivity analysis of one-pin ABC frequencies 127 

Based on the concept of the ABC frequencies as briefly described in Section 2, the classical 128 

driving-point anti-resonance is effectively the one-pin ABC frequencies. Hence the 129 

sensitivity analysis of one-pin ABC frequencies follows the same formulation as the driving-130 

point anti-resonance. From the general definition of the frequency response function (FRF), 131 

the driving-point FRF can be expressed as [18]: 132 
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The driving point anti-resonance frequencies, i.e. the one-pin ABC frequencies, denoted by 135 

ipin _1 , can be obtained by setting Eq.(5) to zero. According to Mottershead [18], the 136 

sensitivities of anti-resonance (one-pin ABC) frequencies to a particular structural parameter 137 

can be expressed as: 138 
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where p is the structural parameter, in this study p represents the beam element stiffness. 140 

Eq. (6) indicates that the sensitivity of the one-pin ABC frequencies is a combination of the 141 

sensitivity of mode shape displacement at the same point and the sensitivity of the natural 142 

frequencies, all to the same parameter p. It is understandable that the localisation capacity of 143 

the one-pin ABC frequencies is dependent upon the relative significance of the mode shape 144 

contribution in the sensitivity, therefore a relative mode shape contribution ratio as proposed 145 

in [19] is adopted here: 146 

                                          



C                                                                     (7) 147 

where C is the relative mode shape contribution ratio,   denotes the natural frequency 148 

contribution and  is the mode shape contribution in the one-pin ABC sensitivity.  and  149 

can be calculated from the first and second term of Eq. 6, respectively. 150 



The (one-pin) ABC frequencies that contain a larger mode shape contribution are expected to 151 

be relatively more sensitive to damage and hence should be selected for the FE model 152 

updating. 153 

3.2 Sensitivity analysis of two-pin ABC frequencies 154 

The similar line of formulation can be extended to the sensitivity of two-pin ABC frequencies 155 

and the determination of the mode shape contributions in the two-pin ABC frequency 156 

sensitivities, as discussed in detail in [26]. Let the measured 22  FRF matrix be expressed 157 

as: 158 
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Inverting the above matrix yields: 160 
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The singular (peak) frequencies in the inverted matrix, i.e. the two-pin ABC frequencies, can 162 

be calculated by setting jiijjjii hhhh   to zero. For simplicity and without losing generality, 163 

let us consider just the first three modes of the ABC frequencies. The two-pin ABC 164 

frequencies with pins at i  and j can be represented as: 165 
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where  212211 jijiA   ,  213312 jijiA   ,  223323 jijiA    167 

The derivative of the two-pin ABC frequencies with respect to a variable parameter p can be 168 

further expressed as follows: 169 
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Accordingly, the natural frequency and mode shape contributions in the two-pin ABC 171 

frequency sensitivities can be expressed as: 172 
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The relative contribution of the mode shape in the two-pin ABC frequency sensitivities can 175 

then be evaluated using Eq. (7). On this basis, the two-pin ABC frequencies can be selected 176 

based on their mode shape contributions in structural damage identification. 177 

3.3 Verification of ABC frequency sensitivity  178 

The basic verification of the ABC frequency sensitivity analysis has been presented in [26]. 179 

Herein some further verification including multiple locations of damage is briefly descried 180 

and discussed.  181 

The beam employed in the simulation for the ABC frequency sensitivity analysis is the same 182 

as the experimental steel beam which will be described in Section 4.1. The beam is 1m long, 183 

and the cross section is 50  6 mm. The beam is fully fixed at both ends. In the analysis, the 184 

beam is divided into ten elements, thus nine artificial pin locations are possible. As 185 



representation, two-pin ABC frequencies are considered and for convenience only the first 186 

order ABC frequencies are employed in the verification. 187 

In the numerical sensitivity analysis, single and multiple damages are created with 1% 188 

stiffness reduction to the different beam elements, and the two-pin ABC frequency 189 

sensitivities calculated using the proposed equations in Section 3.2 are compared with those 190 

obtained directly from the numerical model with the addition of actual pins.   191 

Figure 2 shows the comparison of the two-pin ABC frequency sensitivities for cases where a 192 

single damage location is involved, where the numbers in the x-axis labels indicate the pin 193 

positions, for example, “12” means pins located at points 1 and 2. The vertical axis is the 194 

sensitivity of the squared two-pin ABC frequency according to Eq.  (11). It should be noted 195 

that as the beam is divided into 10 elements herein, nine locations can be used for the pin 196 

placement (two end points are fixed), thus there exists a large amount of combinations for the 197 

two pin positions. Herein only ABC frequency sensitivities with two pins at adjacent points 198 

are illustrated . Figure 3 shows the comparison of the two-pin ABC frequency sensitivities for 199 

cases where two damages are involved. Owing to the fact that there could be numerous 200 

multiple damage combinations, only two damage scenarios are considered herein, namely a) 201 

two closely-spaced damages at element between nodes 2 and 3 and element between nodes 4 202 

and 5, and b) two distantly spaced damages at element between nodes 3 and 4 and element 203 

between nodes 8 and 9.  204 



 205 

(a) Damage between nodes 2 and 3               (b) Damage between nodes 6 and 7 206 

Figure 2 Verification of two-pin ABC frequency sensitivity calculations for single damage 207 

location 208 

 209 

 210 

(a) Closely-spaced damages                                   (b) Distantly-spaced damages 211 

Figure 3 Verification of two-pin ABC frequency sensitivity calculations for multiple damage 212 

locations 213 

 214 

From Figures 2 and 3, it can be observed that in all cases the two-pin ABC frequency 215 

sensitivities calculated using Eq. (11) compare well with the direct results. It should be noted 216 

that only the first few modes are employed to calculate the two-pin ABC frequency 217 

sensitivity using the equations, and this may be the source of the slight differences in the 218 
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comparisons. In general, it can be observed that two-pin ABC frequency sensitivity exhibits 219 

marked variation for different pin (ABC) configurations or locations, and this indicates that 220 

there is a significant scope for the selection of better suited ABC frequencies for a more 221 

reliable damage identification.  222 

4. Experimental programme  223 

A laboratory experimental study has been conducted to investigate the extraction of the ABC 224 

frequencies from physical tests and examine the optimal selection of the ABC frequencies for 225 

damage identification in the test structures.  226 

4.1 Test structure and test procedure 227 

In this study, a scaled steel beam with a flat cross section was chosen for the experiment. The 228 

dimensions of the test beam have been selected so that the modal properties of the test beam 229 

were representative of typical beams in civil engineering construction.  230 

Fig. 4 shows the basic test setup and dimensions of the test beams. The steel beams were 231 

uniformly 1m long, and the cross section was 50mm wide and 6 mm thick. The test beams 232 

were clamped at both ends, simulating fixed-end supports. During the test, each beam was 233 

divided into 10 equal segments, so there were 9 measurement points with the exclusion of the 234 

two end supports.  235 

 236 

(a) Test beam set-up and attachment of accelerometers 237 



 238 

(b) Arrangement of the measurement points for the beam 239 

Figure 4 Test setup for the steel beam 240 

The experiment was carried out following a standard modal testing procedure. An impact 241 

hammer was used to excite the test beams. The impact force time history was measured by a 242 

built-in load cell in the impact hammer. Meanwhile, the dynamic responses of the test beam 243 

were recorded by accelerometers attached to the designated points of the test structure. A 244 

sampling frequency of 20 kHz was employed so as to provide enough resolution for the 245 

recording of the details of the impact force to ensure a reliable FRF calculation. 246 

The procedure described in Section 2 is used to obtain FRF curves and extract one-pin and 247 

two-pin ABC frequencies. It should be noted that several signal processing techniques have 248 

been applied to in the process to obtain the FRF curves to reduce the noise influence, 249 

including windowing, filtering, averaging, and the singular value decomposition (SVD) 250 

procedure. More details of these techniques can be found in [25]. 251 

4.2 Extraction of ABC frequencies from the measurements 252 

With the processed FRF curves from the experiment, one-pin and two-pin ABC frequencies 253 

can be identified from the elements of the inverted FRF matrix. In this section, the extracted 254 

one-pin and two-pin ABC frequencies are examined with the application of the 255 

aforementioned data processing techniques.  256 

To generally cover all possible one-pin and two-pin ABC scenarios, a detailed test routine 257 

was organized such that a large variety of artificial pin configurations can be obtained by 258 

combining the impact and measurement scenarios tested during the experiment. 259 



4.2.1 Experimental one-pin ABC frequencies 260 

For the one-pin cases, the measured FRF matrix reduces to a single driving-point FRF, and 261 

the ABC frequencies are actually the anti-resonances in the FRF curves. In line with the 262 

general ABC approach, these can be identified from peaks on the inverted driving-point FRF.  263 

Figure 5 depicts three one-pin ABC curves (inverted driving-point FRF) from the test beam, 264 

with pin locations distributed along the beam. The extracted one-pin ABC frequencies are 265 

compared with those from the numerical predictions by adding one actual pin to the 266 

corresponding position in the FE model, the results are listed in Table 1. 267 

 268 

(a) One-pin ABC curve with pin at 3           (b) One-pin ABC curve with pin at 6 269 

 270 

(c) One-pin ABC curve with pin at 8 271 

Figure 5 One-pin ABC curves from the intact test beam 272 

 273 



Table 1 One-pin ABC frequencies from the experiment /  FE prediction 274 

Pin location Frequencies (Hz) 

 1st 2nd 3rd 

3 39.9 / 38.8 105.2 / 104.8 210.3 / 206.4 

6 / 83.5 122 / 121.1 /270.4 

8 54.2 / 53.7 152 / 150 261 / 262.7 

 275 

From the above results, it can be seen that if the pin is located at the nodal point of a natural 276 

mode, the corresponding modal information will not be measured. The implication for the 277 

ABC frequencies extraction is that, if that natural mode happens to be an ABC mode as well, 278 

such an ABC mode will not be identifiable from that measurement. In this case, as the centre 279 

point (location 6 in Figure 2b) is nodal point of the second natural mode, and the mode is also 280 

the first ABC mode, only the second ABC frequency can be measured from the test.  281 

For the other measurement cases, the first few one-pin ABC frequencies can be clearly and 282 

exclusively identified, and by comparing to those from the prediction by the FE model, it can 283 

be said that the one-pin ABC frequencies can be extracted with good accuracy. 284 

4.2.2 Experimental two-pin ABC frequencies 285 

As mentioned earlier, for two-pin ABC frequencies the FRF matrix will be a 2 2 matrix, 286 

consisting of four FRF curves. This matrix is then inverted to yield the required 1
mmH  matrix, 287 

with four elements representing four ABC curves. The ABC frequencies may be identified 288 

from any of these curves, and in practice the curves from other elements may be used for 289 

cross-checking and assurance purposes.  290 

There are obviously a variety of configurations with arbitrary locations of the two pins. To 291 

allow for a systematic observation in a better organised manner, representative pin positions 292 



are chosen to cover essentially all possible combinations, with two pins located with various 293 

distances. 294 

Figure 6 depicts four typical two-pin ABC curves from various measurement configurations 295 

(“pin” locations). Similarly, these extracted two-pin ABC frequencies are compared with 296 

those from the FE model by adding two actual pins to the same locations, and the results are 297 

listed in Table 2. 298 

 299 

(a) Pins at node 2 and 3                                   (b) Pins at node 5 and 7 300 

 301 

(c) Pins at 4 and 8                                         (d) Pins at 3 and 9 302 

Figure 6 Two-pin ABC curves from the test beam 303 

 304 

  305 



Table 2 Two-pin ABC frequencies from experiment / FE prediction 306 

Pin locations Frequencies (Hz) 

 1st 2nd 3rd 

2,3 50.1 / 48.3 135.5 / 134 271.6 / 263.8 

5,7 121.6 / 120.8 190.4 / 191.5 346.8 / 340.7 

4,8 141.7 / 139.85 232.8 / 233.3 292.7 / 291.9 

3,9 67.3 / 66.8 191.1 / 189.9 374.9 / 373.0 

 307 

From Fig. 6, the first few peaks can be identified clearly, although the smoothness of these 308 

curves is not as good as in the one-pin scenarios, which is quite expected due to the 309 

involvement of four FRF functions and the inverting operation. In fact, even in a physical test 310 

where two additional pin supports are actually imposed, the frequency response function 311 

could be subject to increased “noises” due to the increased rigidity of the beam and the shift 312 

of the modal frequencies towards a higher range. 313 

The results described above demonstrate that extracting ABC frequencies for a beam-like 314 

structure from a normal modal test is feasible and practical for one-pin and two-pin 315 

configurations. These ABC frequencies can then be considered for structural damage 316 

identification. 317 

5. Experimental investigation of selecting ABC frequencies in structural damage 318 

identification 319 

In this section, the one-pin and two-pin ABC frequencies will be selected based on the the a 320 

sensitivity analysis, and selected ABC frequencies will be used to identify damage in the test 321 

beam. From the results in Section 3, one-pin and two-pin ABC frequencies containing higher 322 

mode shape contribution will be selected for the subsequent application in the damage 323 

identification via a finite element model updating procedure. 324 



5.1 Experimental benchmark damaged beam  325 

In this experiment, a damaged beam was created and the ABC frequencies after creating the 326 

damage are extracted using the same procedure as described in Section 4 for the undamaged 327 

beam. 328 

 329 

(a) Stiffness reduction (damage) in the test beam 330 

 331 

(b) Schematic showing the dimensions of cuts in the beam 332 

Figure 7 Test beam with damage 333 

Figure 7 depicts the damaged test beam. The damage was intended to represent a generic 334 

reduction of the stiffness over a fixed area between about 0.33m-0.36m to the left end of the 335 

beam. Several cuts were made to create a relatively uniform reduction of the section stiffness 336 

over the damaged area, instead of a single cut which would cause a varying stiffness zone in 337 

the vicinity of the cut and hence introducing unnecessary complexity for the present 338 

evaluation. By creating a (relatively) uniform stiffness reduction area, it also makes an 339 



analysis using a simple FE model for comparison more straightforward. With verification 340 

from an FE model, the cuts resulted in a reduction of stiffness by about 30% over a length of 341 

100mm (10% of the total beam length). 342 

The natural frequencies of the damaged beam were measured firstly, and the changes of 343 

natural frequencies due to the damage are listed in Table 3. It can be seen that the damage 344 

leads to a change (reduction) of the natural frequencies in a range of 0.7-2.7%, with the 345 

highest reduction occurring to the second mode. This is expected because the damage 346 

location was at about one-third length of the beam. 347 

Table 3 Experimental natural frequencies and corresponding changes from the damaged 348 

beam 349 

Mode number 1st 2nd 3rd 

Experimental (with cuts) 29.8Hz 80.6Hz 161.6Hz 

Experimental (without cuts) 30.5Hz 82.9Hz 162.7Hz 

Changes due to damages -2.3% -2.8% -0.68% 

 350 

5.2 Selection scheme 351 

As mentioned earlier, there exists a large amount of ABC pin configurations, especially in 352 

two-pin scenarios, it is necessary to make a selection from all available one-pin and two-pin 353 

ABC frequencies to achieve better identification results. In this section, the selection scheme 354 

proposed in [26] is used for the ABC frequency selection, which can be briefly described 355 

below. 356 

For a structure with n elements, a total of n sensitivity values for a particular ABC frequency 357 

can be obtained, forming a sensitivity vector, S. Defining  the sensitivity of the ABC 358 



frequency to a damage in the i-th element as Si,  the sensitivity vector S can be written as [S] 359 

= [S1, S2, …, Sn-1, Sn]. With Eq. (12), the mode shape contribution index C of each ABC 360 

frequency sensitivity can be calculated, giving a vector of index [C] = [C1, C2, …, Cn-1, Cn]. 361 

Based on the mode shape contribution vector C, the overall sensitivity of an ABC frequency 362 

may be expressed as: 363 

                                                    CCCC  /                                                     (13) 364 

where C and C are mean value and standard deviation of the vector C.  365 

From index C , the ABC frequencies with higher mean value and smaller standard deviation 366 

value will be selected for the following damage identification, as these ABC frequency 367 

sensitivities have collectively higher mode shape contributions to all possible damage 368 

scenarios. 369 

5.3 Damage identification on the test beam with selected ABC frequencies 370 

From Section 5.1, the damage created in the test beam can be expressed with the 30% 371 

stiffness reduction at the 4th beam element shown in Figure 2(b). In this Section, a damage 372 

identification procedure is performed using the measured ABC frequencies, and the 373 

identification results in terms of the location and damage severity will be checked against the 374 

about actual damage. 375 

The identification is carried out through a FE model updating procedure, and the genetic 376 

algorithm (GA) is used to update the beam stiffness with selected ABC frequencies in the 377 

process to best match the measured dataset. The parameters used in GA are listed in Table 4, 378 

and more details can be found in [23].  379 

 380 



Table 4 GA configuration 381 

Max generation 1,000 

Selection method Ranking selection 

Crossover method Heuristic crossover 

Crossover probability 0.7 

Mutation method Uniform mutation 

Mutation probability 0.02 

 382 

From previous studies, the number of modal data should be 2-3 times the number of 383 

parameters being updated in order to achieve a satisfactory result [27]. Therefore, in order to 384 

update all of the 10 beam element stiffness values, the minimum 20 one-pin and two-pin 385 

ABC frequencies are selected using the methodology described in section 5.2. Figure 8 shows 386 

the updated results of the element stiffness and corresponding percentage errors with respect 387 

to the actual stiffness distribution in the test beam. 388 

 389 

Figure 8 Model updating results using 20 selected ABC frequencies (left) and corresponding 390 

percentage errors (right) 391 

It can be seen from Figure 8 that the stiffness ratios for most of the 10 beam elements are 392 

predicted within a margin of error of 3%, while the predicted stiffness in the damaged 393 

element has an error of less than 10%. The average percentage error in all stiffness 394 

parameters is 1.4%. Such results demonstrate that, using experimental ABC frequencies, both 395 
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the damage location and the severity could be successfully identified in physical structures 396 

when a similar test condition could be achieved.  397 

5.4 Performance of selected ABC frequencies in multiple damage scenarios 398 

From above results, the selected one-pin and two-pin ABC frequencies can identify the single 399 

damage in the test beam with good quality. In this section, the performance of selected ABC 400 

frequencies in identifying multiple damages is demonstrated. 401 

Similar to the procedure described in Section 5.3, 20 one-pin and two-pin ABC frequencies 402 

are selected to update the 10 beam element stiffness using GA. The results are depicted in 403 

Figure 9, and the maximum and mean updating errors are listed in Table 5. 404 

 405 

(a) Scenario 1                                                         (b) Scenario 2 406 

Figure 9 Model updating results for multiple damage scenarios 407 

Table 5 Maximum and mean updating errors for multiple damage scenarios 408 

Multiple damage scenario Maximum updating error Mean updating error 

1 8% 4% 

2 9% 4.9% 

 409 
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It can be seen from Figure 8 that with selected ABC frequencies, multiple damages in the test 410 

beam can still be identified with good quality, the maximum updating error for multiple 411 

damage scenario is still less than 10%, indicating that minor change in the beam performance 412 

can be detected using the selected one-pin and two-pin ABC frequencies, this further confirm 413 

the robustness of selected ABC frequencies in identifying structural damages. 414 

6. Conclusions 415 

In this paper, an experimental study is presented to investigate the identification of structural 416 

damages using selected ABC frequencies based on a sensitivity evaluation with 417 

measurements from a physical test structure. The measurement procedure to extract the ABC 418 

frequencies and the measurement quality is also discussed.  419 

In accordance with the formulation of the one-pin and two-pin ABC frequency sensitivities, 420 

the selection scheme is derived on the basis of the relative contributions of the mode shape 421 

coordinates at the pin locations in the ABC frequency sensitivities.  422 

The verification of the sensitivities calculated using the formulations in comparison with 423 

those generated from the finite element simulations demonstrate that the calculated ABC 424 

frequency sensitivities are sufficiently accurate for both single- and multiple-damage 425 

scenarios. 426 

Comparison of the experimentally extracted one-pin and two-pin ABC frequencies from the 427 

test beam with those produced from the numerical simulation show that with the described 428 

testing procedure and use of the associated data analysis techniques, the first few one-pin and 429 

two-pin ABC frequencies from each mode can be extracted with good accuracy. 430 

The ABC frequencies from the measured pool are ranked on the basis of the sensitivity 431 

calculations, and those containing high mode shape contributions are selected to the 432 

identification of various damages in the test beam through a FE updating procedure. The 433 



identification results show that with the selected one-pin and two-pin ABC frequencies 434 

reliable identification results about the damage location and severity for single as well as 435 

multiple damage scenarios.  436 

 437 
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