88 research outputs found

    A multi-demand negotiation model based on fuzzy rules elicited via psychological experiments

    Get PDF
    This paper proposes a multi-demand negotiation model that takes the effect of human users’ psychological characteristics into consideration. Specifically, in our model each negotiating agent's preference over its demands can be changed, according to human users’ attitudes to risk, patience and regret, during the course of a negotiation. And the change of preference structures is determined by fuzzy logic rules, which are elicited through our psychological experiments. The applicability of our model is illustrated by using our model to solve a problem of political negotiation between two countries. Moreover, we do lots of theoretical and empirical analyses to reveal some insights into our model. In addition, to compare our model with existing ones, we make a survey on fuzzy logic based negotiation, and discuss the similarities and differences between our negotiation model and various consensus models

    Frustratingly Easy Regularization on Representation Can Boost Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning (DRL) gives the promise that an agent learns good policy from high-dimensional information, whereas representation learning removes irrelevant and redundant information and retains pertinent information. In this work, we demonstrate that the learned representation of the QQ-network and its target QQ-network should, in theory, satisfy a favorable distinguishable representation property. Specifically, there exists an upper bound on the representation similarity of the value functions of two adjacent time steps in a typical DRL setting. However, through illustrative experiments, we show that the learned DRL agent may violate this property and lead to a sub-optimal policy. Therefore, we propose a simple yet effective regularizer called Policy Evaluation with Easy Regularization on Representation (PEER), which aims to maintain the distinguishable representation property via explicit regularization on internal representations. And we provide the convergence rate guarantee of PEER. Implementing PEER requires only one line of code. Our experiments demonstrate that incorporating PEER into DRL can significantly improve performance and sample efficiency. Comprehensive experiments show that PEER achieves state-of-the-art performance on all 4 environments on PyBullet, 9 out of 12 tasks on DMControl, and 19 out of 26 games on Atari. To the best of our knowledge, PEER is the first work to study the inherent representation property of Q-network and its target. Our code is available at https://sites.google.com/view/peer-cvpr2023/.Comment: Accepted to CVPR23. Website: https://sites.google.com/view/peer-cvpr2023

    Global research status and frontiers on microvascular invasion of hepatocellular carcinoma: A bibliometric and visualized analysis

    Get PDF
    IntroductionOver the past decade, several studies on the microvascular invasion (MVI) of hepatocellular carcinoma (HCC) have been published. However, they have not quantitatively analyzed the remarkable impact of MVI. Therefore, a more comprehensive understanding of the field is now needed. This study aims to analyze the evolution of HCC-MVI research and to systematically evaluate the scientific outputs using bibliometric citation analysis.MethodsA systematic search was conducted on the Web of Science Core Collection on 2 May 2022 to retrieve studies on HCC-MVI published between 2013 and 2022. Then, a bibliometric analysis of the publications was performed using CiteSpace, VOSviewer, and other visualization tools.ResultsA total of 1,208 articles on HCC MVI were identified. Of these, China (n = 518) was the most prolific country, and Fudan University (n = 90) was the most notable institution. Furthermore, we observed that Lau Wan Yee participated in most studies (n = 26), and Frontiers in Oncology (IF2020:6.24) published the highest number of documents (n = 49) on this subject, with 138 publications. The paper “Bray F, 2018, CA-CANCER J CLIN, V68, P394” has the highest number of co-cited references, with 119 citations. In addition, the top three keywords were “survival”, “recurrence”, and “microvascular invasion”. Moreover, the research hot spots and frontiers of HCC-MVI for the last 3 years included imaging characteristics and transarterial chemoembolization (TACE) therapy studies.ConclusionsThis study comprehensively summarized the most significant HCC-MVI documents from past literature and highlighted key contributions made to the advancement of this subject and the advancement of this field over the past decade. The trend of MVI research will gradually shift from risk factors and prognosis studies to imaging characteristics and TACE therapy studies

    A Hybrid Wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series

    Get PDF
    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series

    Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma

    Get PDF
    Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71×10-3). Further, potential functional DNA methylation-gene expression-overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk

    SIPA1L3 methylation modifies the benefit of smoking cessation on lung adenocarcinoma survival: an epigenomic-smoking interaction analysis

    Get PDF
    Smoking cessation prolongs survival and decreases mortality of patients with non‐small‐cell lung cancer (NSCLC). In addition, epigenetic alterations of some genes are associated with survival. However, potential interactions between smoking cessation and epigenetics have not been assessed. Here, we conducted an epigenome‐wide interaction analysis between DNA methylation and smoking cessation on NSCLC survival. We used a two‐stage study design to identify DNA methylation-smoking cessation interactions that affect overall survival for early‐stage NSCLC. The discovery phase contained NSCLC patients from Harvard, Spain, Norway, and Sweden. A histology‐stratified Cox proportional hazards model adjusted for age, sex, clinical stage, and study center was used to test DNA methylation-smoking cessation interaction terms. Interactions with false discovery rate‐q ≤ 0.05 were further confirmed in a validation phase using The Cancer Genome Atlas database. Histology‐specific interactions were identified by stratification analysis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. We identified one CpG probe (cg02268510SIPA1L3) that significantly and exclusively modified the effect of smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction = 1.12; 95% confidence interval (CI): 1.07-1.16; P = 4.30 × 10-7]. Further, the effect of smoking cessation on early‐stage LUAD survival varied across patients with different methylation levels of cg02268510SIPA1L3. Smoking cessation only benefited LUAD patients with low methylation (HR = 0.53; 95% CI: 0.34-0.82; P = 4.61 × 10-3) rather than medium or high methylation (HR = 1.21; 95% CI: 0.86-1.70; P = 0.266) of cg02268510SIPA1L3. Moreover, there was an antagonistic interaction between elevated methylation of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835; 95% CI: 1.27-3.74; P = 4.46 × 10−3). In summary, smoking cessation benefited survival of LUAD patients with low methylation at cg02268510SIPA1L3. The results have implications for not only smoking cessation after diagnosis, but also possible methylation‐specific drug targeting

    Bilevel Model for Protection-Branch Measurements-Based Topology Attack Against DC and AC State Estimations

    No full text
    A topology attack, as a special class of false data injection attacks, tampers with topology information of a system to mislead the decision of the control center. This article conducts an in-depth study on topology attacks that aim to interfere with the judgment in topology information and pose potential damage by tampering with measurement data and protection information on branches, namely, protection-branch measurements-based topology attacks (PBT attacks). To achieve PBT attacks in actual networks, we study the protection settings and mechanisms in term of branches including transformers and transmission lines. Then, for the first time, we develop a bilevel model based on the protection configuration from the perspective of security-constrained economic dispatch. Meanwhile, since a bilevel model is constructed against dc state estimation, a conversion method in constructing attack vectors under PBT attacks against ac power system is proposed, which makes PBT attacks more suitable for actual power systems and more concealed. In a set of case studies on an IEEE 14-bus system, the simulation results verify the effectiveness of the model we proposed, analyze the vulnerability of network under PBT attacks, and then identify some critical branches that are defended to cope with PBT attacks. In addition, the comparison between PBT attacks and traditional cyber-overloaded attacks also shows a stronger threat of the studied attacks
    corecore