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Key points: 

 A new hybrid approach is proposed for forecasting hydro-meteorological time series. 

 Rank-Set Pair Analysis combined with wavelet de-noising markedly improves forecasting accuracy. 

 The performance of this approach proves best amongst its present competitors even when the extreme 

value occurs. 



ABSTRACT 

Accurate, convenient forecasting of hydro-meteorological time series is presently a major challenge. This 

paper proposes a hybrid approach, WD-RSPA (Wavelet De-noising and Rank-Set Pair Analysis), that 

takes full advantage of a combination of Wavelet De-noising and Rank-Set Pair Analysis to improve 

forecasts of hydro-meteorological time series. Wavelet de-noising permits decomposition and 

reconstruction of series by the wavelet transform, and hence separation of noise from the original series. 

Rank-Set Pair Analysis (RSPA), a more reliable and efficient version of Set Pair Analysis, is integrated in 

the hybrid WD-RSPA approach. Two kinds of hydro-meteorological data sets with different 

characteristics and different influences from human activity at for representative stations are used to 

illustrate the WD-RSPA approach. The approach is also compared with three other generic methods: the 

conventional Auto Regressive Integrated Moving Average (ARIMA) method; Artificial Neural Networks 

(ANNs) (BP, MLP and RBF); and single Rank-Set Pair Analysis (RSPA). Nine error measures are used to 

evaluate model performance.  The results show that WD-RSPA is accurate, feasible, and effective.  

Moreover, WD-RSPA is found to be the best of the various generic methods compared, even when the 

extreme value occurs within the series. The theoretical approach developed here could be applied more 

generally to forecasting time series in other relevant areas. 

 

Index Terms: 1872, 1988, 1869, 3270 

Key words: Data-driven model, Forecasting, Hydro-meteorological series, Rank-Set Pair Analysis, 

Wavelet De-noising 

 



1 Introduction 

    Water is a prerequisite for life, and so its availability is fundamentally important for human society 

and the environment. However, many countries worldwide experience water problems related to the 

overabundance or lack of water, and deterioration in water quality; such problems include water shortages, 

droughts, floods, damage to aquatic eco-systems, and can be exacerbated by economic development and 

climate change [Whitworth et al. 2012; Mehran et al. 2015 ]. A major challenge is presently faced in how 

to ensure that water resources remain sustainable, and this is made harder by the insufficiency of 

hydrologic data in developing countries [Leung et al., 2013; Qian and Leung, 2007]. Obviously, effective 

rainfall and runoff forecasting techniques are needed that provide scientific evidence and significant 

reference data to underpin water resources planning, design and management. 

    The hydrometeorological process is particularly complicated, partly owing to climate and 

anthropogenic drivers, and is associated with large uncertainties which can have random, fuzzy, fractal, 

and chaotic characteristics [(Sivakumar et al., 1999; Kavvas et al., 2013; Wang et al., 2015]. Existing 

hydrological forecasting methods fall into two broad categories: (1) physically-based models; and (2) 

data-driven models [Shoaib et al., 2015]. Physically-based models require a substantial amount of data to 

simulate the various constituent physical processes within a watershed. Data-driven models include 

stochastic methods and machine learning methods, and may have certain advantages over fully distributed 

models [Nourani et al., 2013]. The most popular data-driven stochastic methods are the auto regressive 

integrated moving average (ARIMA) method, ARIMA with exogenous input (ARIMAX), and Multiple 

Linear Regression (MLR) [Pulido-Calvo and Portela, 2007; Zhang et al., 2011]. Machine learning 

methods, such as supervised learning methods, are essentially based on statistical techniques for 

developing predictive models using training data. Unlike physics-based models, machine learning 

methods rely almost exclusively on information embedded in training datasets [Sun et al., 2014]. The 

most commonly applied of these methods are Artificial Neural Network (ANN) and support vector 

machine (SVM) algorithms [Ghosh and Mujumdar, 2008; Wu and Chau 2011; Valipour et al. 2013; He et 

al. 2014]. The input data used in these two categories of hydrological forecasting models, which include 

calibration data for physically-based models and training data for data-driven models, help determine the 



accuracy and reliability of the forecasting results. 

    Two critical issues arise. One concerns noise which contaminates input data derived from 

hydro-meteorological observations [Wang et al. 2014]. The presence of such noise alters the 

characteristics of the input time series, and limits the performance of identification, simulation, parameter 

estimation and prediction techniques [Minville et al., 2008]. Self-similarity, phase-space reconstruction at 

small length scales, prediction error, and period identification [Elshorbagy et al., 2002; Stevenson et al., 

2010] may also be undermined. If noise-contaminated observed data are input to a forecasting model, 

there will undoubtedly be a negative impact on the predictions. Therefore, it is necessary to remove noise 

from observed data before input so as to enhance the accuracy and reliability of forecasts of 

meteorological and hydrologic time series. To achieve this, we propose preconditioning the observed data 

by wavelet de-noising, a technique based on wavelet analysis (WA) which has been found very effective 

in the multi-scale analysis of time series and has been widely applied to noise reduction [Labat, 2005; 

Schaefli et al., 2007; Nalley et al., 2012]. 

    The second critical issue concerns the calculation methodology and applicability of the models. 

Currently, many different kinds of forecasting models have been developed. However, the mathematical 

complexity of these models has hindered further development and applicability. To overcome this 

drawback, a simple, effective hydro-meteorological forecasting approach is needed based on clear 

concepts, convenient calculations, and which is feasible to apply in practice.  Herein, we use Rank-Set 

Pair Analysis which is a modification of Set Pair Analysis (SPA), a powerful uncertainty analysis method 

which analyzes the degree of connection of a set pair, aspects related to identity, discrepancy and 

contradiction. Following Zhao (2000), SPA has seen widespread applications in mathematics, physics, 

information science, economy, resource assessment, and environmental science.  In the context of 

hydrology and environmental science, SPA has been used for urban ecosystem health assessment (Su et 

al., 2009), water resources system assessment (Wang et al., 2009), river health evaluation (Xu et al., 

2011), landslide hazard degree assessment (Wang and Li, 2012), selection of a reference basin in 

ungauged regions (Wang et al., 2013), risk assessment and forewarning for regional water resources 

(Zhao et al., 2013), evaluation of drought index at multi-time scales (Zhang et al., 2013), water resources 



trends (Feng et al., 2014), river basin resource compensation characteristics (Chen et al., 2014), river 

eco-system assessment and restoration (Jiang et al. 2015), waterlog disaster risk evaluation (Jin et al., 

2015), and sustainability assessment of a water resources system (Du et al. 2015).     

    Several recent advances have improved the reliability and efficiency of SPA. Jin et al. (2012) 

established a forewarning model for sustainable water resources based on a BP neural network coupled 

with SPA. Yang et al. (2012) established an optimal weight combination model, involving rank-SPA, RBF 

and AR sub-models, which provided more accurate precipitation forecasts. Zou et al. (2013) proposed a 

model for comprehensive flood risk assessment based on SPA and variable fuzzy set (VFS) theory. Su et 

al. (2013) constructed an evaluation model of sea dike safety based on a modified SPA method. Zhang et 

al. (2013) established a SPA phase-space reconstruction (SPA-PSR) model that improved forecasting 

precision. Guo et al. (2014) presented a modified SPA to compute the relative membership degree 

functions of variable fuzzy set (VFS) theory used in flood risk assessment. Yang et al. (2014a) examined 

the relative performance of SPA and modified SPA in regional debris flow hazard assessment. Yang et al. 

(2014b) established an improved SPA model for systematic assessment of water resources vulnerability to 

climate change. Chou (2014) applied SPA with similarity forecast and wavelet de-noising to forecast 

annual runoff.  Zhang and Wang (2015) used an entropy-weighted SPA model to evaluate the water 

resource security of a city. Wang et al. (2015b) utilized entropy weighted-SPA to identify dam leaks.  

The present study proposes a hybrid approach, WD-RSPA, which takes full advantage of both 

wavelet de-noising (WD) and rank set-pair analysis (RSPA) in achieving accurate, convenient forecasts 

of meteorological and hydrologic time series. The performance of the WS-RSPA approach is examined 

using annual precipitation time series from stations in Zhengzhou (1951–2009) and Beijing (1951–2010), 

and annual runoff time series from the lower Yellow River at Huayuankou (1950–2007) and Sanmenxia 

(1956–2010). Results from the WD-RSPA approach are compared against those from three alternative 

methods: (1) conventional Auto Regressive Integrated Moving Average (ARIMA); (2) Artificial Neural 

Networks (ANNs) with BP (error Back Propagation), MLP (Multilayer Perceptron) and RBF (Radial 

Basis Function); and (3) single Rank-Set Pair Analysis (RSPA). Nine error metrics are used to evaluate 



model performance. The results demonstrate that WD-RSPA is accurate, feasible and effective, and better 

synthetically than conventional ARIMA, ANNs, and single RSPA methods. 

The paper is organized as follows. Section 2 briefly introduces the basic theory behind wavelet 

analysis and de-noising, Set Pair Analysis and Rank-Set Pair Analysis.  Section 3 outlines the proposed 

WD-RSPA hybrid approach, coupling discrete wavelet de-noising with Rank-Set Pair Analysis. Section 4 

describes the application of WD-RSPA to observed hydro-meteorological data, and the results are 

discussed in the context of alternative forecasting approaches. Section 5 lists the main conclusions.  

2 Methodology 

2.1 Wavelet analysis and de-noising 

First, we describe certain key features of wavelet analysis; for a detailed discussion see Labat (2005), 

Chanerley and Alexander (2007), and Schaefli et al. (2007). Wavelet analysis defines a mother wavelet 

function, denoted ψ(t) where t is time, that must satisfy the following admissibility condition in the 

frequency domain:  

2
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where ( )F  is the Fourier transform of the wavelet function ψ(t) at frequency ω. Wavelet functions are 

obtained by translating and expanding the mother wavelet function to give 
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where ψa,b(t) is the wavelet function; a is a temporal scale factor which reflects the periodic length of a 

wavelet; and b is a time position factor.  To carry out the wavelet transform of a signal, one needs to 

define L
2
(R) as a measurable square integral function space on the real axis. Then, the continuous wavelet 

transform (CWT) of a signal f(t)∈ L
2
(R) can be written, 

1/ 2 *( , ) ( )f

t b
W a b a f t dt

a





 

-
( )    ,                         (3) 

where * t ( )  is the complex conjugate of ψ(t), and Wf (a,b) are the so-called wavelet coefficients. 

Meteorological or hydrologic time series are normally expressed as discrete signals, f(k△t) (k = 1, 

2,…, n in which △t is the time interval), with a and b also given discrete values. The discrete wavelet 



transform (DWT) of signal f (k△t) is expressed as  

/ 2 *
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where a0 (a0 > 1) and b0 are constants. Integer j is a temporal scale factor analogous to parameter a in 

equation (3), and kb0 is a time position factor analogous to parameter b. In practice, the dyadic DWT is 

usually implemented by assigning a0 = 2 and b0 = 1. 

The wavelet de-noising method proposed by Donoho et al. (1995) consists of three steps: 

1. Decomposition: After choosing an appropriate wavelet function and resolution level M, the 

original data are decomposed into approximate coefficients at level M and detailed coefficients at various 

resolutions using DWT. 

2. Threshold ( jT ): Detailed coefficients ,j kW  from levels 1 to M undergo threshold selection, 

leading to decomposed coefficients. Choice of a suitable threshold of wavelet coefficient is undertaken 

using soft-threshold processing, 
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3. Reconstruction: The decomposed coefficients of levels from 1 to M and the approximate 

coefficients at level M are reconstructed to de-noise the data. 

At the core of wavelet de-noising is the selection of a reasonable threshold value, which relates 

directly to the quality of de-noising. Conventional methods for choosing a suitable threshold value 

include FT, SURE, or MINMAX.  

2.2 Set Pair Analysis (SPA) and Rank-Set Pair Analysis (RSPA) 

    Set Pair Analysis (SPA) (see e.g. Zhao (2000); Su et al. (2009); Wang et al. (2009) for further details) 

simultaneously examines certainty and uncertainty links between objective things as an integrated 

determinate–indeterminate system. Properties of SPA are determined by means of identity, discrepancy 

and contradiction of a set pair, according to which the connection degree can be established. The principle 

of SPA is as follows. First the set pair for two relative sets in a uncertainty system is constructed; then its 

properties are determined according to identity, discrepancy and contradiction, namely I, D and C; finally 

the connection degree of the set pair is established according to I, D and C. In short, the basis of SPA is a 



set pair, and its key is connection degree.  

    The set pair H(A, B) is constructed from set A and relative set B whose characteristics are given by 

coefficients a1, a2, …, an, and b1, b2, …, bn.  The degree of connection of the set pair H(A, B) is defined 

by 

A B

s f p
i j

n n n
                                    (6) 

where n is the total number of characteristics of the set pair, s is the number of identity characteristics, f is 

the number of contrary characteristics, p is the number of the characteristics for which the set pair is 

neither identity nor contrary, i is the uncertainty coefficient of discrepancy degree (which has 

condition-dependent values in the range [−1, 1] or may be considered solely as a marker of discrepancy), 

and j is the uncertainty coefficient of contradiction degree (which has value of −1 or may be considered 

solely as a marker of contradiction). Equation (6) can be rewritten as 

A B a bi cj                                          (7) 

where 
s

a
n

 is the identity degree, 
f

b
n

 is the discrepancy degree, and 
p

c
n

  is the contradiction 

degree and 1a b c   .  Equations (6) and (7) describe the three-element connection degree. A 

multi-element connection degree can be obtained by expanding bi in (7) into bi = b1i1 + b2i2 +…+bkik. For 

example, when k = 3, the 5-element connection degree can be obtained as 

1 1 2 2 3 3A B a b i b i b i cj                                    (8) 

where 
1 2 3 1a b b b c     . The discrepancy degree components, b1, b2, b3, may be viewed as 

expressing whether discrepancy is mild, moderate, or severe; i1, i2, i3, are uncertainty component 

coefficients of discrepancy degree.  Choice of a, b (or b1, b2 and b3) and c models the internal subtle 

structure of sets of A and B, feeding into A B   which reflects the overall connectivity of sets A and B.  

Here, the connection degree overcomes certain drawbacks of conventional relationships such as 

correlation coefficient, subordinate degree, or grey correlation degree, each of which involve a single 

index. SPA has the following advantages: (1) clear exposition of the relationship structure; (2) 

quantification of three or more characteristics of a complex relationship; (3) determination of the 



changeable value of a comprehensive relationship, which may depend on required different standards or 

properly selected values for i or i1, i2, i3, …. 

Rank-Set Pair Analysis (RSPA) [Ou et al., 2009] is more reliable and efficient than SPA, and is 

based on the principle of similarity forecasting, taking full advantage of a combination of Rank, a classic 

stochastic concept, and Set Pair Analysis. RSPA is implemented as follows. The meteorological or 

hydrologic time series is denoted as nxxx ,,, 21  , with an underlying assumption that tx  exists 

dependency with its previous T historical value. A moving method is used to obtain the historical sets, 

B ( 1,2, , )i i n T L  corresponding to the subsequent value iTx   (Table 1). Subsequent values iTx   of 

the current set, denoted Y in Table 1, are obtained by (1) identifying the set or set group similar to Y in the 

historical set TnBBB ,,, 21  , and the corresponding subsequent values, and (2) using the weighted 

average method to obtain the forecasting value.  

 

Insert Table 1 here 

 

The detailed procedure is as follows. 

(1) Undertake rank transformation. Mark the elements in 1 2, , , n TB B B   and Y from 1 to T 

according to the rank of elements in the sets to which they belong. Mark elements of the same rank, 

according to their rounded average value. Thus, obtain the rank set ' ' '

1 2, , , n TB B B   and 'Y . 

(2) Construct n−T rank set pairs ' '( , )iB Y  (i=1, 2, . . . , n−T) and calculate the difference d between 

the corresponding elements of '

iB  and 'Y . If 0d , 2Td , or 20  Td , the elements are 

respectively marked “identical”, “contrary”, or “discrepant.”  

(3) Count the total number of “identical,”“contrary,” and “discrepant” elements in each rank set pair.  

(4) Calculate value of connection degree for each rank set pair using equation (6). 

(5) Find similar set '

iB  (or several similar sets under certain circumstances) of Y in accordance with 

the maximum principle. '

iB  is the counterpart of iB  whose subsequent value is xT+i. 



(6) Evaluate 
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where k is the ratio of the average value of the elements in Y and the average value of the elements in 

kB , m is the number of the similar sets of Y. 

3 Wavelet De-noising and Rank-Set Pair Analysis forecasting approach 

The Wavelet De-noising and Rank-Set Pair Analysis (WD-RSPA) procedure is now described. 

Where appropriate, we alter the WD-RSPA acronym to identify the particular de-noising function 

selected; for example, if the wavelet de-noising function “db9” is used, then the established WD-RSPA 

model is referred to as db9-RSPA.  WD-RSPA is implemented as follows: 

(1) Select a time series of n consecutive years, {rfi} (i = 1, 2, …, n), from the observed 

hydro-meteorological time series as input data to the model. 

(2) Use an appropriate wavelet function and a suitable decomposition level to compute the de-noised 

series {xi}. 

(3) Determine set dimension, T, of the time series and establish historical rank sets {Bj} (j = 1, 2, …, 

n-T) and current set Y, according to the length of the series (n) and Table 1. 

(4) Make rank transformation of the sets from Step (3) to obtain the rank historical set {Bj'} (j = 1, 

2, ..., N-T) and a rank current set Y', and so constitute the rank set pairs T)-n 2, 1,(i )Y,B( i ， . 

(5) Calculate connection degree of each rank set pair T)-n 2, 1,(i )Y,B( i ，  using equation (6). 

(6) Use equation (9) to obtain forecasting value for year n + 1. 

The overall process involves one-step forecasting to take full advantage of the available information.  

Figure 1 provides a flow chart illustrating the above steps used to implement WD-RSPA for forecasting 

hydro-meteorological data series. 

 

Insert Figure 1 here 

 

4 Application and discussion 



To evaluate the effectiveness of the WD-RSPA approach, we consider hydro-meteorological data 

sets from four stations in China. Figure 2 shows the locations of these representative stations, one in 

Beijing and three along the lower Yellow River. Case 1 involves the annual runoff series at Huayuankou 

from 1950 to 2007. Case 2 considers the annual runoff series at Sanmenxia station from 1956 to 2010. 

Cases 3 and 4 consider annual precipitation series at Zhengzhou from 1951 to 2009, and at Beijing from 

1951 to 2010. 

 

Insert Figure 2 here 

 

The cases are used to compare WD-RSPA against three generic alternatives: Auto Regressive 

Integrated Moving Average (ARIMA) method with model selection based on the AIC criterion; three 

types of Artificial Neural Networks (ANNs) namely ANN-BP(Back propagation), ANN-MLP (Multilayer 

Perception) and ANN-RBF (Radial Basis Function); and single Rank- Set Pair Analysis (RSPA). The 

following nine measures are used for model evaluation: Relative Error (RE); percentage pass rate for RE 

< 10% (P10); percentage pass rate for RE < 20% (P20); Maximum Relative Error (MaxRE); Minimum 

Relative Error (MinRE); Mean Relative Error (MRE); Standard Deviation of Relative Error (SD-RE); 

Root Mean Square Error (RMSE); and Thiel Inequality Coefficient (TIC).  

4.1 Case 1: Annual runoff series at Huayuankou Station, lower Yellow River, China 

Huayuankou Station is located in the lower Yellow River, China, near where the riverbed rises above 

the level of the surrounding land (the so-called perched Yellow River).  We consider the observed 

annual runoff series at Huayuankou Station from 1950 to 2007, a period lasting 58 years.  Using input 

data from 1950 to 1997, model forecasts of the annual runoff series from 1998 to 2007, are compared 

against observations. 

Here, mother wavelet functions “coif3” and “bior2.4” are used with one resolution level during 

wavelet de-noising. The set dimension, T, used in the WD-RSPA and the single RSPA models is 

variously prescribed to be 4, 5, or 6.  



 Figure 3 presents the observed annual runoff time series with superimposed forecasts made by 

the AR(4), ANN-BP, coif3-RSPA, and bior2.4-RSPA models for Huayuankou, taking T = 5. Table 2 lists 

values of the observed annual runoff and nine performance measures obtained for the auto-regressive 

AR(4), ANN-BP, coif3-RSPA, and bior2.4-RSPA models for set dimension T = 5.  In this case, the 

AR(4) model performed best out of the ARIMA models, and the ANN-BP model performed better than 

either the ANN-RBF or ANN-MLP models. 

 

Insert Figure 3 here 

 

Insert Table 2 here 

 

It can be seen from Table 2 and Figure 3 that: 

(1) Annual runoff forecasts by WD-RSPA depend on choice of wavelet de-noising function. This is 

particularly evident in years 2000 and 2003, when forecasts by the bior2.4-RSPA model (186.65 and 

229.84) are much closer to observed values (165.30 and 272.70) than forecasts by the coif3-RSPA model 

(205.59 and 201.25). 

(2) The WD-RSPA and ANN-BP models simulate correctly the changing characteristics of the 

observed series, unlike the AR(4) model. Forecasts by the AR(4) model are closer to the mean value of 

the observed series than those by the other models. 

 (3) The maximum value of MinRE is obtained using the AR(4) model indicating that it gives the 

worst forecast over the 10 year period of interest. 

(4) The minimum value of SD-RE is associated with the AR(4) model indicating that its forecasting 

errors are relatively concentrated in comparison with the other models whose forecasting errors are 

relatively dispersed. 

(5) The maximum P10 and P20 measures are obtained for the bior2.4-RSPA model indicating it is 

most accurate.  



(6) The other measures, MaxRE, MRE, RMSE and TIC, invariably have minimum values for the 

bior2.4-RSPA model, which indicates it provides the best comprehensive forecasts in this case of the 

methods considered.  

Taking bior2.4 as the de-noising function, we now study the influence of the set dimension, T, used 

in WD-RSPA and single RSPA models.  Table 3 compares the observed and forecast annual runoff 

series statistics by listing the performance measures of the single RSPA and bior2.4-RSPA models for T = 

4, 5, and 6, applied to the data from Huayuankou.  

 

Insert Table 3 here 

 

Figure 4 compares the relative errors between observed and forecast annual runoff time series at 

Huayuankou, the latter obtained using the single RSPA and bior2.4-RSPA models for T = 4, 5, and 6. 

 

Insert Figure 4 here 

 

It can be seen from Table 3 and Figure 4 that: 

(1) The performance measures of the WD-RSPA and single RSPA models are affected by the choice 

of set dimension, T. 

(2) For each T, the P10 and P20 values obtained using bio2.4-RSPA tend to be greater than those 

using the single RSPA model, indicating that bio2.4-RSPA provides a better forecast in this case.  

(3) For each T, the remaining six measures, MaxRE, MinRE, MRE, SD-RE, RMSE and TIC, are 

invariably smaller for the bior2.4-RSPA model than for the single RSPA model, implying that that the 

forecasting capability of the bior2.4-RSPA model is better than the single RSPA model.  

(4) For eight performance measures (P10, P20, MRE, MaxRE, MinRE, SD-RE, RMSE and TIC), 

selection of the bior2.4-RSPA model with T = 5 invariably results in a minimum or maximum value 

corresponding to the most accurate, comprehensive forecasts of annual runoff.  

4.2 Case 2: Annual runoff series at Sanmenxia Station, lower Yellow River, China 



Sanmenxia Station is located close to a major dam upstream of Huayuankou, and monitors runoff in 

the upper reaches of the lower Yellow River.  The observed annual runoff series from Sanmenxia station 

covers 55 years from 1956 to 2010.  Here, annual forecasts are made for the period from 2002 to 2010 

using observed data from 1956 to 2001, and the results compared against the remaining observed data.  

During wavelet de-noising of the time series data, mother wavelet functions “db6” and “dmey” are used, 

with a resolution level of 1.  Again, the set dimension, T, used in WD-RSPA and single RSPA models, is 

varied, taking values of 4, 5, and 6.  

Tables 4–6 list the observed annual runoff series at Sanmenxia and the resulting values of the 

different performance measures obtained for the AR(4), ANN-BP, single RSPA, db6-RSPA, and 

dmey-RSPA models.  In this case, the AR(4) model performs best among the ARIMA models and the 

ANN-RBF is most accurate of the ANN models considered, and so results from the other ARIMA and 

ANN models are not included in Tables 4–6. 

 

Insert Table 4 here 

Insert Table 5 here 

Insert Table 6 here 

Insert Figure 5 here 

 

It can be seen from Tables 4–6 and Figure 5 that: 

(1) The WD-RSPA and AR(4) models provide the best estimates of the changing characteristics of 

the annual runoff series in comparison with observations, with the ANN-BP model giving the worst 

forecast in this case.  The forecast annual runoff series by the single RSPA model almost invariably has 

smaller values than the corresponding observations. 

(2) Forecasts of annual runoff at Sanmenxia by the WD-RSPA models are influenced by the choice 

of wavelet de-noising function. For example, considering 2009 and 2010 with T set to 6, the RE values 

associated with the db6-RSPA model are 0.003 and 0.13, whereas those of the dmey-RSPA model are 

0.03 and 0.28. 



 (3) Overall, the 8 statistical measures, P10, P20, MaxRE, MinRE, MRE, SD-RE, RMSE, and TIC, 

show that WD-RSPA usually attains a minimum or maximum value, indicating that WD-RSPA 

(especially dmey-RSPA with T = 5) provides the most accurate, comprehensive forecasts for Sanmenxia 

over the ten year period under consideration.  

(4) In terms of all 9 performance measures, the annual runoff forecasts made by the WD-RSPA and 

single RSPA models are affected by the value assigned to T.  For example, RMSE for the db6-RSPA 

model forecasts alters from 41.56 to 35.61 to 48.36 as T changes from 4 to 5 to 6.  Similarly, RMSE for 

the single RSPA model appears to increase monotonically from 40.09 to 55.94 as T increases from 4 to 6. 

4.3 Case 3: Annual precipitation series at Zhengzhou Station, lower Yellow River, China 

We now consider annual precipitation series data from Zhengzhou Station in Henan Province, China.  

Observed precipitation data are available for a 59-year period from 1951 to 2009. We fit the models to 

data from 1951 to 2000, obtain forecasts from 2001 to 2009, and compare the results against observations.  

For de-noising, the mother wavelet functions used are “db9” and “rbio3.5”.  Again, the resolution level 

is 1, and the set dimension, T, varied from 4 to 6 in the WD-RSPA and single RSPA models.  

Tables 7–9 compare the relative performances of the AR(1), ANN-BP, single RSPA, db9-RSPA, 

and rbio3.5-RSPA models in forecasting precipitation series at Zhengzhou for T = 4, 5, and 6 . Results 

from other ARIMA and ANN models are not reproduced in Tables 7–9 because they give poorer 

forecasts than AR(1) and ANN-RBF respectively. 

 

Insert Table 7 here 

Insert Table 8 here 

Insert Table 9 here 

Insert Figure 6 here 

 

It can be seen from Tables 7–9 and Figure 6 that: 



(1) The WD-RSPA and ANN-BP models are best at forecasting the changing characteristics of the 

annual precipitation series, by comparison with observations at Zhengzhou, whereas the AR(1) model and 

single RSPA model are much less accurate. 

(2) Choice of wavelet de-noising function in WD-RSPA is important. For example, when T = 4, the 

RE values of db9-RSPA are 0.007 and 0.7, and rbio3.5-RSPA are 0.0043 and 0.12 respectively for 2008 

and 2009.  

(3) Interpretation of the values of the remaining 8 measures (P10, P20, MaxRE, MinRE, MRE, SD-RE, 

RMSE and TIC) shows that WD-RSPA gives maxima or minima associated with best performance in 

forecasting annual precipitation at Zhengzhou.  

(4) Again, the selected value of set dimension has an impact on the forecasts made by the WD-SPA 

and RSPA models, as can been seen in the variation in all nine performance measures with T.  For 

example, the RMSE values obtained for the forecasts made by the db9-RSPA model are 1659.06, 1444.62, 

and 1653.06 for T = 4, 5, and 6, respectively.    

4.4 Case 4: Annual precipitation series at Beijing Station, China 

Finally, we consider a 60-year annual precipitation record from 1951 to 2011 for Beijing Station, 

located in the capital city of China.  Forecasts are provided for the years from 2002 to 2002.  Mother 

wavelets, “db6” and “dmey” are used for de-noising the raw data. The number of the resolution level is 1.  

Table 10 lists values of the 9 performance measures, obtained by comparing the forecast and observed 

annual precipitation time series using AR(3), ANN-RBF, db6-RSPA, and dmey-RSPA models, taking T = 

4.  Results from the other ARIMA and ANN models are not presented owing to the poorer performance 

of these models. 

 

Insert Table 10 here 

 

Figure 7 presents the annual precipitation observations and forecasts for Beijing Station from 2002 

to 2010, with the forecasts obtained using AR(3), ANN-RBF, db6-RSPA, and dmey-RSPA models, and T 

= 4. 



 

Insert Figure 7 here 

 

It can be seen from Table 10 and Figure 7 that: 

(1) The annual precipitation forecasts obtained for Beijing by WD-RSPA are affected by choice of 

wavelet de-noising function. For example, the forecasts for 2009 and 2010 by the db6-RSPA model 

(4971.8 and 5274.1) are much closer to the observed values (4806 and 5225) than those by the 

dmey-RSPA model (5544.4 and 4616.3). 

(2) The WD-RSPA and AR(3) models are better at simulating the changing annual precipitation 

behavior than the ANN-RBF model. 

(3) The values of the P10 and P20 measures confirm that the WD-RSPA model gives forecasts that are 

more accurate and comprehensive than those of the other models considered.  

(4) Six statistical measures, MaxRE, MinRE, MRE, SD-RE, RMSE, and TIC, show that dmey-RSPA 

model consistently obtains the minimum value, indicating that the dmey-RSPA model is most applicable 

in this case. 

Now we take "db6" as the de-noising function, and investigate the influence of set dimension, used 

in the established WD-RSPA and single RSPA models, for T = 4, 5, and 6. 

Table 11 lists the observed annual precipitation forecasts and nine performance metrics for Beijing 

Station obtained using the single RSPA and db6-RSPA models, setting T = 4, 5, and 6.  Figure 8 plots 

the corresponding RE values obtained for both models. 

 

 

Insert Table 11 here 

Insert Figure 8 here 

 

It can be seen from Table 11 and Figure 8 that: 



(1) Different annual precipitation time series are forecast using WD-RSPA and the single RSPA 

models, with RSPA tending to give higher estimates.  The results are sensitive to the value of T, with 

extreme values obtained for either T = 4 or 6. 

(2) For each T, the values obtained for P10 and P20 are always larger for db6-RSPA than RSPA, 

indicating that db6-RSPA is better at forecasting the precipitation in Beijing than the single RSPA model 

in this case. 

(3) For each T, the remaining six measures, MaxRE, MinRE, MRE, SD-RE, RMSE, and TIC, have 

consistently lower values for db6-RSPA than single RSPA, confirming the better forecasting efficacy of 

db6-RSPA.  

(4) Examination of the values of P10, MaxRE, SD-RE, RMSE, and TIC, shows that db6-RSPA with T 

= 4 always provides a minimum or maximum value, demonstrating that this tuned model is best in this 

case. 

4.5 Further discussion 

    (1) By de-noising the raw time series data, a better representation is achieved of the actual 

characteristics of hydro-meteorological time series.  By taking full advantage of wavelet de-noising, 

WD-RSPA can improve the accuracy of hydro-meteorological time series forecasts. For example, in Case 

3 with T = 5, MRE obtained using the db9-RSPA model is 0.12, a value less than half that obtained using 

the single RSPA model. Examining all nine performance metrics in Cases 1 to 4, it can be seen that the 

de-noised WD-RSPA approach almost always performs better than any of the  models without 

de-noising. 

    (2) The type of wavelet de-noising function utilized is a key factor influencing the performance of 

the WD-RSPA approach. In all cases, the forecasts by the WD-RSPA models depended on the choice of 

wavelet de-noising function.  For example, in Case 2 the RMSE values obtained using the db6-RSPA 

and dmey-RSPA models are 41.56 and 40.86 at T = 4, and 35.61 and 34.20 at T = 5, respectively. It 

should be noted that, though the present work has studied selection of appropriate wavelet de-noising 

function for four specific cases in China, the problem of matching wavelet de-noising functions to generic 

cases remains a major challenge in practice. 



    (3) The set dimension, T, is another key factor influencing the performance of the WD-RSPA 

approach.  In particular, WD-RSPA model forecasts differ according to T in all cases. Taking Case 3 as 

an example, the MRE values for the db9-RSPA model results are 0.15, 0.12, and 0.18, for T = 4, 5 and 6, 

respectively. Further study is needed on selection of the set dimension. 

    (4) In all cases, and by all measures, WD-RSPA performs best even when the extreme value is 

encountered, provided a suitable wavelet function and set dimension are selected. In general, forecasting 

the extreme values is a major problem.  For example, in Case 1 the minimum value of runoff occurs in 

2000, over the range of forecast-years considered; from Table 2, RE of the bior2.4-RSPA (T = 5) forecast 

is 0.13, the least value of all the models considered. The runoff of 2001 is the second lowest value in all 

the forecast-years considered, and the corresponding RE of the bior2.4-RSPA model (T = 5) is 0.01, again 

the smallest value of all models. As to the runoff of 2006, the maximum value in all the forecast-years, 

RE of the bior2.4-RSPA model (T = 4) is 0.10, below that of the single RSPA model (0.16) and the AR(4) 

model (0.17), but much larger than the minimum of 0.04 from the ANN-BP model. 

    (5) Observed hydro-meteorological time series are very complicated, being influenced by factors 

such as atmospheric circulation, geographical features, land surface conditions, and human activities. The 

accuracy of hydro-meteorological forecasts could be restricted if a single method is solely used; it is 

prudent to combine two or more methods to improve the accuracy of such forecasts. 

5 Conclusion 

This paper has dealt with two critical issues that arise in forecasting meteorological and hydrologic time 

series, namely: noise contamination of input data; and the over-complexity of calculation approaches at 

present.  To overcome these drawbacks, a hybrid WD-RSPA approach is proposed to take full advantage 

of both Wavelet De-noising and Rank-Set Pair Analysis in improving the accuracy and ease of 

hydro-meteorological forecasting. Analyses of annual runoff and precipitation time series from four 

representative stations in China are used to examine the effectiveness of the WD-RSPA approach by 

comparison with other standard techniques, including the conventional Auto Regressive Integrated 

Moving Average (ARIMA) method, Artificial Neural Networks (ANNs), and single Rank-Set Pair 

Analysis (RSPA). Using nine statistical measures to evaluate model performance it is found that 



WD-RSPA approach is accurate, feasible and effective, and almost invariably the best amongst the 

various methods compared, even when the extreme value occurs. The improved accuracy of WD-RSPA 

should make it a useful technique in the study of hydro-meteorological (and other) time series. 
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obtained using single RSPA and db6-RSPA models (T = 4, 5, 6): Case 4, Beijing Station, China 



 

Table 1 Set pairs composed of elements from the time series 

Sets Elements in sets Subsequent values 

B1 x1 x2 … xT xT+1 

B2 x2 x3 … xT+1 xT+2 

… … … … … … 

Bi xi xi+1 … xT+i-1 xT+i 

… … … … … … 

Bn-T xn-T xn-T+1 … xn-1 xn 

Y xn-T+1 xn-T+2 … xn xn+1 

 



 

Table 2 Annual runoff observations and forecasts, with nine performance metrics for AR(4), 

ANN-BP, coif3-RSPA, and bior2.4-RSPA models (T = 5): Case 1, Huayuankou Station, lowerYellow 

River, China. 

Year MV 
AR(4) ANN-BP coif3-RSPA bior2.4-RSPA 

FV/RE FV/RE FV/RE FV/RE 

1998 217.9 168.51/0.22 172.83/0.21 206.64/0.05 230.68/0.06 

1999 208.7 219.84/0.05 229.02/0.10 200.46/0.04 203.51/0.02 

2000 165.3 190.43/0.15 188.06/0.14 205.59/0.24 186.65/0.13 

2001 165.5 194.73/0.18 138.82/0.16 160.31/0.03 163.28/0.01 

2002 195.6 218.84/0.12 191.10/0.02 154.96/0.21 155.81/0.20 

2003 272.7 216.25/0.21 236.97/0.13 201.25/0.26 229.84/0.16 

2004 240.5 218.50/0.09 273.46/0.14 238.36/0.009 234.49/0.03 

2005 257.0 230.29/0.10 316.23/0.23 244.49/0.05 243.73/0.05 

2006 281.1 234.30/0.17 269.42/0.04 247.85/0.11 247.42/0.12 

2007 269.7 237.72/0.12 269.11/0.002 295.15/0.09 293.90/0.09 

     

P10 0.20 0.40 0.60 0.60 

P20 0.80 0.80 0.70 0.90 

MaxRE 0.22 0.23 0.26 0.20 

MinRE 0.05 0.002 0.009 0.01 

     

MRE 0.14 0.12 0.11 0.09 

SD-RE 0.16 0.23 0.28 0.19 

RMSE 34.91 31.15 32.43 24.51 

TIC 0.0784 0.0669 0.0720 0.0540 

Note: 

1. MV: measured value, 10
8
m

3
; FV: forecast value, 10

8
m

3
. 

2. (1) AR(4): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) coif3-RSPA: WD-RSPA method using de-noising wavelet function-coif3; (4) bior2.4-RSPA: 

WD-RSPA method using de-noising wavelet function-bior2.4. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 



 

 

Table 3 Annual runoff observations, with nine performance metrics for single RSPA and 

bior2.4-RSPA models (T = 4, 5, 6): Case 1, Huayuankou Station, lower Yellow River,China. 

Year MV 
RE (T=4) RE (T=5) RE (T=6) 

RSPA bior2.4-RSPA RSPA bior2.4-RSPA RSPA bior2.4-RSPA 

1998 217.9 0.12 0.02 0.22 0.06 0.63 0.08 

1999 208.7 0.09 0.087 0.06 0.02 0.14 0.03 

2000 165.3 0.08 0.17 0.16 0.13 0.06 0.25 

2001 165.5 0.07 0.04 0.10 0.01 0.07 0.05 

2002 195.6 0.09 0.22 0.17 0.20 0.10 0.24 

2003 272.7 0.36 0.20 0.36 0.16 0.56 0.21 

2004 240.5 0.29 0.05 0.26 0.03 0.20 0.06 

2005 257.0 0.03 0.02 0.30 0.05 0.18 0.16 

2006 281.1 0.16 0.10 0.23 0.12 0.33 0.27 

2007 269.7 0.07 0.11 0.04 0.09 0.18 0.12 

        

P10 0.60 0.50 0.20 0.60 0.20 0.40 

P20 0.80 0.80 0.50 0.90 0.60 0.60 

MaxRE 0.36 0.22 0.36 0.20 0.63 0.27 

MinRE 0.03 0.02 0.04 0.01 0.06 0.03 

       

MRE 0.14 0.10 0.19 0.09 0.24 0.15 

SD-RE 0.32 0.22 0.31 0.19 0.60 0.28 

RMSE 42.91 28.24 53.58 24.51 76.78 40.51 

TIC 0.0977 0.0624 0.1191 0.0540 0.1734 0.0906 

Note: 

1. MV: measured value, 10
8
m

3
. 

2. bior2.4-RSPA: WD-RSPA method using de-noising wavelet function-bior2.4. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 4 Annual runoff observations, with nine performance metrics for RSPA, AR(4), ANN-BP, 

db6-RSPA, and dmey-RSPA models (T = 4): Case 2, Sanmenxia Station, lowerYellow River, China 

Year MV RSPA~RE AR(4)~RE ANN-BP~RE db6-RSPA~RE dmey-RSPA~RE 

2002 152.1 0.16 0.11 0.08 0.03 0.08 

2003 236.1 0.34 0.34 0.29 0.40 0.40 

2004 168.7 0.003 0.22 0.16 0.06 0.07 

2005 211.4 0.18 0.11 0.07 0.09 0.24 

2006 212.0 0.10 0.07 0.28 0.08 0.15 

2007 242.7 0.28 0.17 0.40 0.08 0.07 

2008 210.8 0.10 0.15 0.24 0.13 0.03 

2009 219.7 0.08 0.02 0.001 0.01 0.02 

2010 250.1 0.01 0.07 0.88 0.28 0.16 

      

P10 0.33 0.33 0.33 0.67 0.56 

P20 0.78 0.78 0.44 0.78 0.78 

MaxRE 0.34 0.34 0.88 0.40 0.40 

MinRE 0.003 0.02 0.001 0.01 0.02 

      

MRE 0.14 0.14 0.26 0.13 0.14  

SD-RE 0.33 0.28 0.74 0.36 0.35 

RMSE 40.09 36.75 87.97 41.56 40.86 

TIC 0.0997 0.0874 0.1948 0.1019 0.1010 

Note: 

1. MV: measured value, 10
8
m

3
. 

2. (1) AR(4): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) db6-RSPA: WD-RSPA method using de-noising wavelet function-db6; (4) dmey-RSPA: 

WD-RSPA method using de-noising wavelet function-dmey. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 5 Annual runoff observations, with nine performance metrics for RSPA, AR(4), ANN-BP, 

db6-RSPA, and dmey-RSPA models (T = 5): Case 2, Sanmenxia Station, lowerYellow River, China 

Year MV RSPA~RE AR(4)~RE ANN-BP~RE db6-RSPA~RE dmey-RSPA~RE 

2002 152.1 0.08 0.11 0.08 0.03 0.03 

2003 236.1 0.47 0.34 0.29 0.36 0.34 

2004 168.7 0.10 0.22 0.16 0.22 0.14 

2005 211.4 0.08 0.11 0.07 0.05 0.05 

2006 212.0 0.22 0.07 0.28 0.07 0.23 

2007 242.7 0.23 0.17 0.40 0.07 0.04 

2008 210.8 0.29 0.15 0.24 0.15 0.07 

2009 219.7 0.13 0.02 0.001 0.06 0.03 

2010 250.1 0.07 0.07 0.88 0.12 0.11 

      

P10 0.44 0.33 0.33 0.56 0.56 

P20 0.56 0.78 0.44 0.78 0.78 

MaxRE 0.47 0.34 0.88 0.36 0.34 

MinRE 0.07 0.02 0.001 0.03 0.03 

      

MRE 0.19 0.14 0.27 0.13 0.11 

SD-RE 0.38 0.28 0.74 0.30 0.30 

RMSE 50.70 36.75 87.97 35.61 34.20 

TIC 0.1290 0.0874 0.1948 0.0854 0.0836 

Note: 

1. MV: measured value, 10
8
m

3
. 

2. (1) AR(4): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) db6-RSPA: WD-RSPA method using de-noising wavelet function-db6; (4) dmey-RSPA: 

WD-RSPA method using de-noising wavelet function-dmey. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 6 Annual runoff observations, with nine performance metrics for RSPA, AR(4), ANN-BP, 

db6-RSPA, and dmey-RSPA models (T = 6): Case 2, Sanmenxia Station, lowerYellow River, China 

Year MV RSPA~RE AR(4)~RE ANN-BP~RE db6-RSPA~RE dmey-RSPA~RE 

2002 152.1 0.07 0.11 0.08 0.01 0.15 

2003 236.1 0.44 0.34 0.29 0.39 0.45 

2004 168.7 0.02 0.22 0.16 0.57 0.18 

2005 211.4 0.007 0.11 0.07 0.07 0.09 

2006 212.0 0.26 0.07 0.28 0.12 0.16 

2007 242.7 0.28 0.17 0.40 0.14 0.17 

2008 210.8 0.30 0.15 0.24 0.07 0.005 

2009 219.7 0.17 0.02 0.001 0.003 0.03 

2010 250.1 0.31 0.07 0.88 0.13 0.28 

      

P10 0.33 0.33 0.33 0.44 0.33 

P20 0.44 0.78 0.44 0.78 0.78 

MaxRE 0.44 0.34 0.88 0.57 0.45 

MinRE 0.007 0.02 0.001 0.003 0.005 

      

MRE 0.20 0.14 0.27 0.17 0.17 

SD-RE 0.41 0.28 0.74 0.54 0.38 

RMSE 55.94 36.75 87.97 48.36 48.48 

TIC 0.1342 0.0874 0.1948 0.1156 0.1213 

Note: 

1. MV: measured value, 10
8
m

3
. 

2. (1) AR(4): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) db6-RSPA: WD-RSPA method using de-noising wavelet function-db6; (4) dmey-RSPA: 

WD-RSPA method using de-noising wavelet function-dmey. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 7 Annual precipitation observations, with nine performance metrics for RSPA, AR(1), ANN-BP, 

db9-RSPA, and rbio3.5-RSPA models (T = 4): Case 3, Zhengzhou Station, lowerYellow River, China 

Year MV RSPA~RE AR(1)~RE ANN-BP~RE db9-RSPA~RE rbio3.5-RSPA~RE 

2001 4018 0.47 0.54 0.47 0.50 0.42 

2002 5993 0.03 0.08 0.16 0.16 0.09 

2003 9539 0.44 0.35 0.07 0.45 0.33 

2004 7674 0.06 0.16 0.16 0.0044 0.07 

2005 7288 0.02 0.14 0.11 0.08 0.10 

2006 6926 0.18 0.07 0.05 0.005 0.06 

2007 5964 0.24 0.05 0.08 0.08 0.18 

2008 6582 0.02 0.02 0.37 0.007 0.0043 

2009 7625 0.12 0.18 0.17 0.07 0.12 

      

P10 0.44 0.44 0.33 0.67 0.44 

P20 0.67 0.78 0.78 0.78 0.78 

MaxRE 0.47 0.54 0.47 0.50 0.42 

MinRE 0.02 0.02 0.05 0.0044 0.0043 

      

MRE 0.18 0.18 0.18 0.15 0.15 

SD-RE 0.50 0.48 0.40 0.54 0.39 

RMSE 1688.98 1521.34 1287.35 1659.06 1350.12 

TIC 0.1227 0.1142 0.0898 0.1221 0.0983 

Note: 

1. MV: measured value, 0.1mm. 

2. (1) AR(1): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) db9-RSPA: WD-RSPA method using de-noising wavelet function-db9; (4) rbio3.5-RSPA: 

WD-RSPA method using de-noising wavelet function- rbio3.5. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 8 Annual precipitation observations, with nine performance metrics for RSPA, AR(1), ANN-BP, 

db9-RSPA, and rbio3.5-RSPA models (T = 5): Case 3, Zhengzhou Station, lowerYellow River, China 

Year MV RSPA~RE AR(1)~RE ANN-BP~RE db9-RSPA~RE rbio3.5-RSPA~RE 

2001 4018 0.41 0.54 0.47 0.26 0.39 

2002 5993 0.24 0.08 0.16 0.13 0.18 

2003 9539 0.49 0.35 0.07 0.42 0.36 

2004 7674 0.23 0.16 0.16 0.01 0.04 

2005 7288 0.19 0.14 0.11 0.01 0.03 

2006 6926 0.28 0.07 0.05 0.02 0.09 

2007 5964 0.36 0.05 0.08 0.15 0.06 

2008 6582 0.87 0.02 0.37 0.01 0.12 

2009 7625 0.004 0.18 0.17 0.05 0.16 

      

P10 0.22 0.44 0.33 0.56 0.44 

P20 0.33 0.78 0.78 0.78 0.78 

MaxRE 0.49 0.54 0.47 0.42 0.39 

MinRE 0.004 0.02 0.05 0.01 0.03 

      

MRE 0.25 0.18 0.18 0.12 0.16 

SD-RE 0.47 0.48 0.40 0.40 0.37 

RMSE 2114.96 1521.34 1287.35 1444.62 1425.49 

TIC 0.1611 0.1142 0.0898 0.1061 0.1060 

Note: 

1. MV: measured value, 0.1mm. 

2. (1) AR(1): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) db9-RSPA: WD-RSPA method using de-noising wavelet function-db9; (4) rbio3.5-RSPA: 

WD-RSPA method using de-noising wavelet function- rbio3.5. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 9 Annual precipitation observations, with nine performance metrics for RSPA, AR(1), ANN-BP, 

db9-RSPA, and rbio3.5-RSPA models (T = 6): Case 3, Zhengzhou Station, lowerYellow River, China. 

Year MV RSPA~RE AR(1)~RE ANN-BP~RE db9-RSPA~RE rbio3.5-RSPA~RE 

2001 4018 0.59 0.54 0.47 0.50 0.47 

2002 5993 0.08 0.08 0.16 0.13 0.09 

2003 9539 0.60 0.35 0.07 0.43 0.33 

2004 7674 0.20 0.16 0.16 0.05 0.04 

2005 7288 0.30 0.14 0.11 0.05 0.01 

2006 6926 0.47 0.07 0.05 0.08 0.02 

2007 5964 0.33 0.05 0.08 0.14 0.39 

2008 6582 0.0095 0.02 0.37 0.09 0.10 

2009 7625 0.05 0.18 0.17 0.15 0.07 

       

P10 0.22 0.44 0.33 0.44 0.67 

P20 0.22 0.78 0.78 0.78 0.67 

MaxRE 0.60 0.54 0.47 0.50 0.47 

MinRE 0.0095 0.02 0.05 0.05 0.01 

      

MRE 0.29 0.18 0.18 0.18 0.17 

SD-RE 0.63 0.48 0.40 0.47 0.50 

RMSE 2580.80 1521.34 1287.35 1653.06 1483.93 

TIC 0.1972 0.1142 0.0898 0.1212 0.1066 

Note: 

1. MV: measured value, 0.1mm. 

2. (1) AR(1): auto-regression method; (2) ANN-BP: artificial neural network – error back propagation 

method; (3) db9-RSPA: WD-RSPA method using de-noising wavelet function-db9; (4) rbio3.5-RSPA: 

WD-RSPA method using de-noising wavelet function- rbio3.5. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



Table 10 Annual precipitation observations and forecasts, with nine performance metrics for AR(3), 

ANN-RBF, db6-RSPA, and dmey-RSPA models (T = 4): Case 4, Beijing Station, China 

Year MV 
AR(3) ANN-RBF db6-RSPA dmey-RSPA 

FV/RE FV/RE FV/RE FV/RE 

2002 3704 3375.20/0.09 4614.30/0.25 3578.80/0.03 3713.40/0.003 

2003 4449 3747.30/0.16 5791.70/0.30 4251.20/0.04 4073.70/0.08 

2004 4835 4053.90/0.16 4443.70/0.08 4427.70/0.08 4481.20/0.07 

2005 4107 4480.20/0.09 5170.80/0.26 4504.40/0.10 4659.90/0.13 

2006 3180 4457.70/0.40 4468.50/0.41 4248.80/0.34 3436.50/0.08 

2007 4839 3998.30/0.17 4485.50/0.07 3859.40/0.20 3420.50/0.29 

2008 6263 4320.90/0.31 4397.20/0.30 4429.30/0.29 5067.80/0.19 

2009 4806 5048.10/0.05 4422.10/0.08 4971.80/0.03 5544.40/0.15 

2010 5225 5194.70/0.006 4495.00/0.14 5274.10/0.009 4616.30/0.12 

     

P10 0.44 0.33 0.67 0.44 

P20 0.78 0.44 0.67 0.89 

MaxRE 0.40 0.41 0.34 0.29 

MinRE 0.006 0.07 0.009 0.003 

     

MRE 0.16 0.21 0.1261 0.1255 

SD-RE 0.36 0.34 0.34 0.23 

RMSE 914.11 1046.64 807.80 744.90 

TIC 0.1015 0.1114 0.0888 0.0822 

Note: 

1. MV: measured value, 0.1mm. 

2. (1) AR(3): auto-regression method; (2) ANN-RBF: artificial neural network – Radial Basis Function 

method; (3) db6-RSPA: WD-RSPA method using de-noising wavelet function-db6; (4) dmey-RSPA: 

WD-RSPA method using de-noising wavelet function- dmey. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

Table 11 Annual precipitation observations, with nine performance metrics for for single RSPA and 

db6-RSPA models (T = 4, 5, 6): Case 4, Beijing Station, China 

Year MV 
RE (T=4) RE (T=5) RE (T=6) 

RSPA db6-RSPA RSPA db6-RSPA RSPA db6-RSPA 

2002 3704 0.04 0.03 0.03 0.04 0.14 0.01 

2003 4449 0.23 0.04 0.01 0.007 0.02 0.15 

2004 4835 0.34 0.08 0.24 0.10 0.27 0.09 

2005 4107 0.03 0.10 0.20 0.13 0.26 0.01 

2006 3180 0.47 0.34 0.49 0.34 0.51 0.09 

2007 4839 0.14 0.20 0.11 0.14 0.14 0.24 

2008 6263 0.30 0.29 0.32 0.37 0.43 0.42 

2009 4806 0.10 0.03 0.16 0.10 0.20 0.04 

2010 5225 0.03 0.009 0.14 0.02 0.10 0.03 

       

P10 0.44 0.67 0.22 0.44 0.22 0.67 

P20 0.56 0.67 0.67 0.78 0.44 0.78 

MaxRE 0.47 0.34 0.49 0.37 0.51 0.42 

MinRE 0.03 0.009 0.01 0.007 0.02 0.01 

       

MRE 0.19 0.13 0.19 0.14 0.23 0.12 

SD-RE 0.44 0.34 0.42 0.38 0.44 0.38 

RMSE 1065.76 807.80 1053.19 940.50 1271.21 1007.37 

TIC 0.1206 0.0888 0.1195 0.1030 0.1472 0.1150 

Note: 

1. MV: measured value, 0.1mm. 

2. db6-RSPA: WD-RSPA method using de-noising wavelet function-db6. 

3. (1) RE: relative error; (2) P10: percentage pass rate for relative error < 10%; (3) P20: percentage pass 

rate for relative error < 20%; (4) MaxRE: maximum relative error; (5) MinRE: minimum relative error; (6) 

MRE: mean relative error; (7) SD-RE: standard deviation of relative error; (8) RMSE: root mean square 

error; (9) TIC: Thiel inequality coefficient. 

 



 

 

 

Figure 1 Flow chart outlining WD-RSPA (Wavelet De-noising and Rank-Set Pair Analysis) procedure for 

forecasting hydro-meteorological data series 
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Figure 2 Four representative hydro-meteorological stations in China  

 

 



 

Figure 3 Observed and forecast annual runoff time series, the latter obtained using AR(4), ANN-BP, 

coif3-RSPA, and bior2.4-RSPA models (T = 5): Case 1, Huayuankou Station, lower Yellow River, 

China 

 



 

 

 

Figure 4 Relative errors between observed and forecast annual runoff time series, the latter obtained using 

single RSPA and bior2.4-RSPA models (T = 4, 5, 6): Case 1, Huayuankou Station, lower Yellow River, 

China 



 

(a) T=4 

 

(b) T=5 

 

(c) T=6 

Figure 5 Observed and forecast annual runoff time series, the latter obtained using AR(4), ANN-BP, 

single RSPA, db6-RSPA, and dmey-RSPA models, for T = (a) 4,(b) 5 and (c) 6: Case 2, Sanmenxia 

Station, lower Yellow River, China



 

(a) T=4 

 

(b) T=5 

 

(c) T=6 

Figure 6 Observed and forecast annual precipitation time series, the latter obtained using AR(1), ANN-BP, 

single RSPA, db9-RSPA, and rbio3.5-RSPA models, for T = (a) 4,(b) 5 and (c) 6: Case 3, Zhengzhou 

Station, Yellow River, China 

 



 

Figure 7 Observed and forecast precipitation time series, the latter obtained using AR(3), ANN-RBF, 

db6-RSPA, and dmey-RSPA models, for T = 4: Case 4, Beijing Station, China 

 



 

 

Figure 8 Relative errors between observed and forecast annual precipitation time series, the latter 

obtained using single RSPA and db6-RSPA models (T = 4, 5, 6): Case 4, Beijing Station, China 

 


