158 research outputs found

    Evaluation Methods of Satellite Navigation System Performance

    Get PDF
    With the development of global satellite navigation system, for example, global positioning system (GPS) and so on, some regional navigation systems and augmentation systems are developing rapidly. The continuous development of satellite navigation system has attracted the users’ attention to satellite navigation performance, which makes the navigation system performance become the key of satellite navigation system competition in the field of GNSS applications. The signal in space (SIS) continuity evaluation model based on the reliability is established, and the mean time between failures (MTBF) is used to characterize the probability that there is no continuity loss in unit time. Aiming at the incompleteness of the current availability model, a per-satellite availability evaluation models based on Markov process is established. Moreover, the constellation availability evaluation model is proposed by combining the satellite failure rate, repair rate and backup situation. By analyzing the measured data, the probability of the continuity and availability of GPS and BeiDou Navigation Satellite System (BDS) are calculated respectively. The results are instructive for the study of the availability performance monitoring and the evaluation of global BDS

    Mechanically enhanced electrical conductivity of polydimethylsiloxane-based composites by a hot embossing process

    Get PDF
    Electrically conductive polymer composites are in high demand for modern technologies, however, the intrinsic brittleness of conducting conjugated polymers and the moderate electrical conductivity of engineering polymer/carbon composites have highly constrained their applications. In this work, super high electrical conductive polymer composites were produced by a novel hot embossing design. The polydimethylsiloxane (PDMS) composites containing short carbon fiber (SCF) exhibited an electrical percolation threshold at 0.45 wt % and reached a saturated electrical conductivity of 49 S/m at 8 wt % of SCF. When reducing the sample thickness from 1.0 to 0.1 mm by the hot embossing process, a compression-induced percolation threshold occurred at 0.3 wt %, while the electrical conductivity was further enhanced to 378 S/m at 8 wt % SCF. Furthermore, the addition of a second nanofiller of 1 wt %, such as carbon nanotube or conducting carbon black, further increased the electrical conductivity of the PDMS/SCF (8 wt %) composites to 909 S/m and 657 S/m, respectively. The synergy of the densified conducting filler network by the mechanical compression and the hierarchical micro-/nano-scale filler approach has realized super high electrically conductive, yet mechanically flexible, polymer composites for modern flexible electronics applications

    Spatial heterogeneity of a microbial community in Kongsfjorden, Svalbard during late summer 2006 and its relationship to biotic and abiotic factors

    Get PDF
    The 16S and 18S ribosomal ribonucleic acid genes of microbial organisms collected from the contrasting environments (temperature, salinity, silicate, phosphate and nitrate, p <0.05) of the inner and outer basins of Kongsfjorden (Spitsbergen, Arctic) were studied using polymerase chain reaction-denaturing gradient gel electrophoresis(DGGE) fingerprinting. Comparison of the microbial fingerprints and the physicochemical parameters revealed that molecular methodology exhibited a greater sensitivity. Sequences obtained from bacterial DGGE were affiliated with four main phylogenetic groups of bacteria: Proteobacteria(Alpha, Beta and Gamma), Bacteroidetes, Verrucomicrobia and Cyanobacteria. The relationships between the genotype distribution of these microbes and associated biotic/abiotic factors, revealed by canonical correspondence analysis, showed that Station 1 at 30 m (outer fjord) was grouped separately from the other sites. This difference could be a consequence of the thermocline and base of the euphotic layer at this depth where the Atlantic and Arctic-type waters overlapped

    Toll-like receptor 5-mediated IL-17C expression in intestinal epithelial cells enhances epithelial host defense against F4+ ETEC infection

    Get PDF
    International audienceAbstractEnterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. The IL-17 cytokine family is well known to play important roles in the host defense against bacterial infections at the mucosa. Previously, we reported the potential role of IL-17A in clearing an ETEC infection in piglets. IL-17C, another member of the IL-17 family, is highly expressed in the intestinal epithelium, however, its role during an ETEC infection is still unclear. In this study, we demonstrate that F4+ ETEC induce IL-17C mRNA and protein expression in intestinal tissues as well as in porcine intestinal epithelial cells (IPEC-J2). This IL-17C production is largely dependent on TLR5 signaling in IPEC-J2 cells. Both F4+ ETEC infection and exogenous IL-17C increased the expression of antimicrobial peptides and tight junction proteins, such as porcine beta-defensin (pBD)-2, claudin-1, claudin-2 and occludin in IPEC-J2 cells. Taken together, our data demonstrate that TLR5-mediated IL-17C expression in intestinal epithelial cells enhances mucosal host defense responses in a unique autocrine/paracrine manner in the intestinal epithelium against ETEC infection

    Entering the Era of Earth Observation-Based Landslide Warning Systems: A novel and exciting framework

    Get PDF
    Landslide early warning remains a grand challenge due to the high human cost of catastrophic landslides globally and the difficulty of identifying a diverse range of landslide triggering factors. There have been only a very limited number of success stories to date. However, recent advances in earth observation (EO) from ground, aircraft and space have dramatically improved our ability to detect and monitor active landslides and a growing body of geotechnical theory suggests that prefailure behavior can provide clues to the location and timing of impending catastrophic failures. In this paper, we use two recent landslides in China as case studies, to demonstrate that (i) satellite radar observations can be used to detect deformation precursors to catastrophic landslide occurrence, and (ii) early warning can be achieved with real-time in-situ observations. A novel and exciting framework is then proposed to employ EO technologies to build an operational landslide early warning system.This work was supported by the National Natural Science Foundation of China under grants 41801391, 41874005, and 41929001; the National Science Fund for Outstanding Young Scholars of China under grant 41622206; the Fund for International Cooperation under grant NSFCRCUK_NERC; Resilience to Earthquake-Induced Landslide Risk in China under grant 41661134010; the open fund of State Key Laboratory of Geodesy and Earth’s Dynamics (SKLGED2018-5-3-E); Sichuan Science and Technology Plan Project under grant 2019YJ0404; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project under grant SKLGP2018Z019; the Spanish Ministry of Economy and Competitiveness, the State Agency of Research, and the European Funds for Regional Development under projects TEC2017-85244-C2-1-P and TIN2014-55413-C2-2-P; and the Spanish Ministry of Education, Culture, and Sport under project PRX17/00439. This work was also partially supported by the U.K. Natural Environment Research Council through the Center for the Observation and Modeling of Earthquakes, Volcanoes, and Tectonics under come30001 and the Looking Inside the Continents From Space and Community Earthquake Disaster Risk Reduction in China projects under NE/K010794/1 and NE/N012151/1, respectively, and by the European Space Agency through the ESA-MOST DRAGON-4 project (32244 [4]). Roland Bürgmann acknowledges support by the NASA Earth Surface and Interior focus area

    From multi-omics approaches to personalized medicine in myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI

    Vitamin B1 Helps to Limit Mycobacterium tuberculosis Growth via Regulating Innate Immunity in a Peroxisome Proliferator-Activated Receptor-γ-Dependent Manner

    No full text
    It is known that vitamin B1 (VB1) has a protective effect against oxidative retinal damage induced by anti-tuberculosis drugs. However, it remains unclear whether VB1 regulates immune responses during Mycobacterium tuberculosis (MTB) infection. We report here that VB1 promotes the protective immune response to limit the survival of MTB within macrophages and in vivo through regulation of peroxisome proliferator-activated receptor γ (PPAR-γ). VB1 promotes macrophage polarization into classically activated phenotypes with strong microbicidal activity and enhanced tumor necrosis factor-α and interleukin-6 expression at least in part by promoting nuclear factor-κB signaling. In addition, VB1 increases mitochondrial respiration and lipid metabolism and PPAR-γ integrates the metabolic and inflammatory signals regulated by VB1. Using both PPAR-γ agonists and deficient mice, we demonstrate that VB1 enhances anti-MTB activities in macrophages and in vivo by down-regulating PPAR-γ activity. Our data demonstrate important functions of VB1 in regulating innate immune responses against MTB and reveal novel mechanisms by which VB1 exerts its function in macrophages

    Uncovering Divergence of Rice Exon Junction Complex Core Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and Reproduction

    No full text
    The exon junction complex (EJC) plays important developmental roles in animals; however, its role in plants is not well known. Here, we show various aspects of the divergence of each duplicated MAGO NASHI (MAGO) and Y14 gene pair in rice (Oryza sativa) encoding the putative EJC core subunits that form the obligate MAGO-Y14 heterodimers. OsMAGO1, OsMAGO2, and OsY14a were constitutively expressed in all tissues, while OsY14b was predominantly expressed in embryonic tissues. OsMAGO2 and OsY14b were more sensitive to different stresses than OsMAGO1 and OsY14a, and their encoded protein pair shared 93.8% and 46.9% sequence identity, respectively. Single MAGO down-regulation in rice did not lead to any phenotypic variation; however, double gene knockdowns generated short rice plants with abnormal flowers, and the stamens of these flowers showed inhibited degradation and absorption of both endothecium and tapetum, suggesting that OsMAGO1 and OsMAGO2 were functionally redundant. OsY14a knockdowns phenocopied OsMAGO1OsMAGO2 mutants, while down-regulation of OsY14b failed to induce plantlets, suggesting the functional specialization of OsY14b in embryogenesis. OsMAGO1OsMAGO2OsY14a triple down-regulation enhanced the phenotypes of OsMAGO1OsMAGO2 and OsY14a down-regulated mutants, indicating that they exert developmental roles in the MAGO-Y14 heterodimerization mode. Modified gene expression was noted in the altered developmental pathways in these knockdowns, and the transcript splicing of UNDEVELOPED TAPETUM1 (OsUDT1), a key regulator in stamen development, was uniquely abnormal. Concomitantly, MAGO and Y14 selectively bound to the OsUDT1 premessenger RNA, suggesting that rice EJC subunits regulate splicing. Our work provides novel insights into the function of the EJC locus in growth, development, and reproduction in angiosperms and suggests a role for these genes in the adaptive evolution of cereals

    Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size

    No full text
    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants
    • …
    corecore