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Early warning systems (EWSs) to detect and monitor 
landslides are a great challenge. They are important due 

to the high cost of catastrophic landslides and are challeng-
ing because of the difficulty in identifying a diverse range 
of landslide-triggering factors. While there has been a very 
limited number of successes, recent advances in Earth ob-
servation (EO) from the ground, aircraft, and space have 
dramatically improved our ability to detect and monitor 
active landslides. A growing body of geotechnical theory 
suggests that prefailure behavior can offer clues to the loca-
tion and timing of impending catastrophic failures. In this 
article, we use two recent landslides in China as case studies 
to demonstrate that satellite radar observations can be used 
to detect deformation precursors to catastrophic landslides 
and that early warnings can be achieved with real-time, in 
situ observations. We propose a novel and exciting frame-
work that employs EO technologies to build an operational 
landslide EWS.

INTRODUCTION
Landslides, when soil or rock moves down a slope, have 
been shaping mountainous regions for millennia, but to-
day they pose a destructive hazard to people and infrastruc-
ture that results in hundreds of deaths and billions of dol-
lars in damages every year [1]. The combination of a rapidly 
increasing global population and the intensifying weather 
extremes associated with recent climate change suggests 
that landslide risk will dramatically increase over the next 

decade. Landslide deformation can be extremely slow (a 
few millimeters per year) or involve sudden failure [2], so 
their hazards include both enduring damage to manmade 
structures and catastrophic destructive events. 

While small landslides make up the vast majority of 
landslide events in any given year, large landslides tend to 
be responsible for most damage and loss of life [3]. Current 
landslide risk mitigation strategies tend to reduce exposure, 
the likelihood that someone or something is impacted by 
a landslide, primarily by moving to, or locating infrastruc-
ture in, less hazardous locations. However, asset relocation 
is not feasible for most people. In these situations, short-
term evacuation is often the most attractive or only option. 
Therefore, improved landslide forecasts and early warning 
capabilities are expected to be crucial in managing land-
slide risk for many individuals and communities.

Although major landslide triggers (e.g., rainfall and seis-
mic shaking) and the basic physics governing landslide initi-
ation are well known, predicting where and when landslides 
will occur remains a challenge, primarily due to the diffi-
culty in forecasting the triggering factors themselves as well 
as the spatial variations in earth materials and slope condi-
tions. Existing forecasting methods generally involve func-
tional relationships between trigger-factor intensity (e.g., 
precipitation history and peak seismic ground acceleration) 
and landslide probability. However, the connection between 
triggers and landslides is complex; some landslides occur 
without an identifiable trigger and others with significant 
delay. For example, the 2006 Leyte landslide, which killed 
more than 1,100 people in the Philippines, occurred five 
days after a large rainstorm. Although the population was 
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initially evacuated, they had returned to their homes before 
the landslide occurred [4]. Displacements recorded over time 
could provide critical additional information for predicting 
the possible timing of impending slope failure [5].

Based on conventional in situ survey methods, the con-
cept of landslide EWSs has been proposed for several years 
[6]–[12]. These works often result in suggested warning cri-
teria for specific locations. Successful early warning cases, 
in which a clear warning was given prior to catastrophic 
slope failure, have been very limited due to the inadequate 
temporal and spatial precision of ground observations 
[13]. Building trustworthy real-time EWSs that can identify 
when to prompt short-term evacuations with suitable spa-
tial and temporal precision is important but difficult.

Spaceborne synthetic aperture radar (SAR) sensors emit 
radar signals and record the amplitude of the backscat-
tered signal as well as the phase from which the changes 
in range between the satellite and Earth’s surface can be in-
ferred [14]. Interferometric SAR (InSAR) is a powerful tool 
for measuring Earth’s surface motion over large regions 
[15]–[17], in all weather conditions, at meter resolution. 
InSAR also offers the capability to remotely monitor un-
stable slopes [18]–[21]. Recent studies have demonstrated 
that conventional InSAR and related time-series techniques 
(e.g., persistent scatterer InSAR and small baseline InSAR) 
can identify, map, and monitor active landslides [22]–[26] 
and even detect precursory deformation signals prior to 
their eventual failure [27]–[29]. Note that spaceborne In-
SAR currently has a minimum repeat cycle of six days for 
Sentinel-1, one day for COSMO-SkyMed [30], 11 days for 
TerraSAR-X, and longer for other satellites, which represents 
a major limitation of spaceborne InSAR for EWSs.

In situ global navigation satellite system (GNSS) moni-
toring can measure 3D landslide motion at a very high tem-
poral frequency (e.g., 20 Hz) and spatial accuracy (2–4 mm 
in plan and 4–8 mm in vertical) [31]. Other in situ moni-
toring methods include extensometers, inclinometers, and 
pore water pressure sensors. However, these methods pro-
vide point-based measurements only at sensors, which are 
costly to install and maintain. Thus, in situ observations 
are limited by the number of sensors that can be deployed 
at key locations and may not capture the spatial variations 
in landslide motion prior to failure. There are two obvious 
hurdles to deploying ground-based monitoring techniques: 
sites with potential landslides should be detected prior to 
their failure, and key monitoring locations in the landslide 
bodies should be identified.

Spaceborne InSAR and in situ sensors are complemen-
tary tools to monitor surface displacements given InSAR’s 
high spatial resolution (meters to tens of meters) over a 
wide region (e.g., 250 km × 250 km for Sentinel-1) but are 
limited by temporal resolution (constrained by the frequen-
cy of satellite overpasses) and in situ sensors’ fine temporal 
resolution at their locations. We suggest that it is now both 
feasible and timely to combine these EO technologies to 
build an integrated landslide EWS. In this article, the 2017 

Xinmo landslide in Sichuan, China, is used to demonstrate 
the ability of spaceborne InSAR to identify precursory land-
slide deformation, while the 2017 Dangchuan 4# landslide 
in Heifangtai (Gansu, China) is used to demonstrate the 
successful application of a timely early warning for land-
slides by in situ measurements [32].

Based on the advantages, limitations, and complemen-
tarity of different EO methods, a landslide early warning 
framework is proposed to increase the resilience of local 
communities to landslide hazards by informing popula-
tions of when to leave for short-term evacuations.

This article makes the case that obtaining a landslide 
early warning from EO is now within our grasp. We believe 
that this message is both important and timely. It is sig-
nificant because landslides kill thousands of people every 
year, predominantly in parts of the world that are poorest 
and thus least able to protect themselves. It is well-timed 
because, although early warning has long been touted as 
a “golden bullet” in landslide risk mitigation, it requires 
accurate predictions that have generally been out of reach 
until now.

METHODOLOGY
The InSAR data set for the time series displacement extrac-
tion of Xinmo landslides includes 29 descending SAR im-
ages acquired by Sentinel-1A/1B satellites from 9 November 
2015 to 19 June 2017. The European Space Agency’s (ESA’s) 
Sentinel-1A/1B satellites operate day and night, performing 
C-band microwave SAR imaging and providing radar im-
agery with wide coverage (e.g., 250 × 250 km) and a short 
repeat cycle (6–24 days). The SAR data in this study were 
interferometrically processed with GAMMA software. A 
shuttle radar topography mission (SRTM) with 30-m hori-
zontal resolution was used to simulate and eliminate the 
topographic phase. Interferograms were filtered by the 
adaptive filtering method to reduce noise. Coherent pixels 
were detected using the full-rank matrix approach demon-
strated in [33] and their time series analysis was performed 
following the InSAR time series integrated atmospheric 
estimation model (InSAR TS+AEM) described in [34]. 
Both the coherent pixel detection approach and the InSAR 
TS+AEM method have been successfully used in previous 
InSAR studies. The mean velocity map and time series dis-
placements results were finally geocoded into the WGS84 
coordinate system.

Researchers from the State Key Laboratory of Geohaz-
ard Prevention and Geoenvironment Protection (SKLGP) 
at Chengdu University of Technology have been monitoring 
the Heifangtai area with a range of in situ sensors includ-
ing seven GNSS receivers, 34 crackmeters, two range gauges, 
and 13 piezometers since 2017. The sensors collected data 
that were transmitted to SKLGP in real time with the Gen-
eral Packet Radio Service. Note that the real-time adaptive 
crackmeter developed by SKLGP [35] acquired one sampling 
per hour in normal conditions but automatically increased 
its samples when a displacement acceleration was detected.
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RESULTS

PREFAILURE MOVEMENT SIGNALS REVEALED 
WITH SPACEBORNE INTERFEROMETRIC SYNTHETIC 
APERTURE RADAR
On 24 June 2017, a 13 million-m3 landslide suddenly bur-
ied Xinmo, Sichuan, China, causing 10 deaths; 73 people 
are still missing. Xinmo is a village on the left bank of the 
Songping River, a first-order tributary of the upper reaches 
of the Minjiang River [36]. The surrounding steep slopes are 
prone to rock falls, landslides, and debris flows [37]. The re-
gion is tectonically active: several active faults nearby have 
generated three ≥ 6.7-magnitude (Mw) earthquakes since 
the 1930s [Figure 1(a)]. Xinmo itself was built on the depos-
its of an old landslide triggered by the 1933 7.3-Mw Diexi 
earthquake [36], [38] [Figure 1(a)].

To explore the prefailure displacement history of 
the Xinmo landslide, InSAR analysis was performed on  
Sentinel-1 data to determine a mean velocity map and 
a time series of landslide motion for an approximately 
1.5-year period prior to failure (Figure 2). The accumula-
tive displacement map during the period from November 
2015 to June 2017 [Figure 2(a)] shows that the area near 
the head scarp of the landslide exhibited clearly detectable 
displacements, with a maximum of 3 cm preceding failure. 
Figure 2(c)–(e) shows the displacement times series results 
for three selected points (P1, P2, and P3), whose locations 
are shown in Figure 2(b). The last three acquisition dates 
are 26 May 2017, 7 June 2017, and 19 June 2017 (five days 
before the failure), respectively. A dramatic acceleration 
can be observed during the period from 7 June 2017 to 19 
June 2017 (from 17 days before the failure). It should also 
be noted that all interferograms were carefully checked to 
avoid phase unwrapping errors, and the InSAR time series 
was performed pixel by pixel. We did not apply strong spa-
tial filtering; hence, our InSAR mean velocity map is not as 
smooth as those in previous studies. However, the overall 
pattern of our InSAR mean velocity map is consistent with 
those in previous results (e.g., [28] and [29]).

These findings clearly demonstrate that quantitative 
time-series analysis from satellite radar observations can 
detect accelerated movements prior to catastrophic failure, 
occurring 5–17 days before the landslide. It should be noted 
that the source area of the Xinmo landslide is located on a 
steep slope at an altitude of ~3,400 m above sea level, where 
in situ sensors would be difficult to install, highlighting one 
notable advantage of InSAR over in situ monitoring sensors.

EARLY WARNING FOR THE DANGCHUAN 4# 
LANDSLIDE USING IN SITU SENSORS
The Heifangtai loess terrace, located in Yongjing County, 
Gansu, China [Figure 3(b)], with an area of 13.7 km2, is 
formed from a terrace of quaternary aeolian loess deposits 
[39]. Since the Yellow River pumping irrigation project be-
gan in 1966, frequent landslides have occurred on the terrace 
margins. The Dangchuan 4# landslide is in southwest-central 

Heifangtai near Guoxia, Yongjing County. Among the in situ 
sensors, a crackmeter installed across the trailing head scarp 
edge of Dangchuan 4# [Figure 3(a)] provided critical dis-
placement measurements in real time, which were used in a 
successful 8-h early warning in 2017.

The crackmeter observations showed a clearly accel-
erated displacement rate at Dangchuan 4# on 23 August 
2017 [Figure 3(b)]; hence, a yellow warning was issued to 
the village leader and local government by text message, 
informing them to “pay close attention to this slope and 
prepare for disaster prevention.” After a detailed field inves-
tigation, the local government confirmed the warning and 
released an official landslide warning announcement to lo-
cal communities on 23 September 2017 with several alert  
boards posted around the landslide area [Figure 3(c)]. On 
27 September 2017, the yellow warning was upgraded to an 
orange warning due to the accelerating displacement rate 
measured at the crackmeter. At 17:50 on 30 September 2017, 
the system (a geohazard real-time monitoring and EWS [40] 
developed by SKLGP) automatically released a red warning, 
which was confirmed by a panel of experts. Three hours 
later, at 20:55 on 30 September 2017, an official red warning 
was issued to the local government [Figure 3(d)], prompt-
ing a government-led emergency response and evacuation. 
The local government immediately started its emergency re-
sponse, and more than 20 villagers in the landslide hazard 
zone were evacuated. At 05:00 on 1 October 2017, a land-
slide occurred [Figure 3(e)], damaging several buildings, but 
there were no casualties owing to the early warning [32].

This successful case clearly demonstrates the potential 
importance of real-time displacement measurements and 
the role that in situ sensors could play in EWSs. A prelimi-
nary retrospective InSAR study showed that InSAR with L-
band Advanced Land Observing Satellite-2 images were able 
to capture the accelerated movements that occurred 15 days 
before the landslide (Figure 4).

DISCUSSION

FEASIBILITY AND COMPLEMENTARITY OF EARTH 
OBSERVATION FOR LANDSLIDE EARLY WARNING
A range of laboratory, field, and theoretical studies have 
identified prefailure creep acceleration of landslides and 
suggest that it can be divided into three phases [41]–[47]: 
primary creep, secondary creep, and tertiary creep [Fig-
ure  5(a)]. Primary creep is characterized by a decreasing 
strain rate over time, which often lasts for a short period 
or can be even absent in some cases [42]. Secondary creep 
is characterized by slow movement at a nearly constant 
rate, but with fluctuations in real slopes due to the influ-
ence of external factors such as rainfall. The duration of 
the secondary creep is difficult to estimate; it can last for 
months, years, or even decades [42], [48] despite continu-
ous displacement during this phase. Tertiary creep is char-
acterized by a rapid acceleration of displacement until final 
failure [49]. Although such speedups may be common prior 
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FIGURE 1. Pre- and post-event photos of the location of the 24 June 2017 Xinmo landslide. (a) The location of the Xinmo landslide and the 
epicenters of three large historical earthquakes. (b) An unmanned aerial vehicle (UAV) photo of the Xinmo landslide with an inset photo of 
Xinmo village taken before the event. (c) A postfailure photo of the Xinmo landslide. The entire village was buried under the accumulated 
debris. m a.s.l.: meters above sea level. [Source: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP); 
used with permission.]
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to catastrophic failure events [48], the number of actual ob-
servations of such speedup behavior remains limited due 
to the absence of the right EO technologies in the right lo-
cations at the right times. Therefore, there are two primary 

challenges for landslide early warning: 1) monitoring sur-
face displacements over a wide region with sufficient resolu-
tion and accuracy to identify areas undergoing secondary 
creep and 2) identifying when or under what circumstances 
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sensors. (Source: Google Earth; used with permission.) (b) The cumulative displacement and displacement rates from a crackmeter installed across 
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a slow-moving landslide (i.e., in secondary creep phase) en-
ters the accelerated displacement of a tertiary creep phase, 
leading to rapid failure.

Advances in EO offer the potential to address these two 
challenges. In the primary and secondary phases, weekly 
to monthly observations would be enough to distinguish 
areas undergoing more rapid creep. In the tertiary creep 
phase, subdaily sampling intervals are needed to capture 
the accelerated creep [Figure 5(b)]. InSAR currently has a 
shortest repeat cycle of 1–11 days while GNSS and some 
other in situ sensors can provide high-rate (e.g., 1–20-
Hz) measurements. Only slow tertiary creep displace-
ments (e.g., < 0.012  m/day over a distance of 100 m for 
Sentinel-1[50]) could potentially be captured by InSAR 
because its measuring capability is limited by the spa-
tial displacement gradients. This limitation can be over-
come using SAR pixel offset tracking [19] or the range 

split-spectrum interferometry-assisted phase unwrap-
ping method [50]; in situ sensors generally do not have  
such limitations [Figure 5(c)]. On the other hand, InSAR 
offers extensive spatial coverage that enables the detection 
of potential landslides in the primary and secondary creep 
phases. To monitor a single slope in its tertiary phase, In-
SAR and in situ sensors can provide complementary cover-
age in space and time.

EARTH OBSERVATION-BASED LANDSLIDE EWS
Figure 5 illustrates EO’s ability to provide unprecedented 
and encouraging opportunities for prefailure creep moni-
toring. However, the different technologies have their own 
advantages and limitations, as illustrated by Xinmo and 
Dangchuan’s case studies. A single EO method is insuffi-
cient to capture all the signals in the different creep stag-
es, so multiple EO technologies should be combined to 
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develop a landslide EWS. Figure 6 shows the framework 
of an operational landslide EWS that relies on an optimal 
combination of these EO technologies, detailed as follows.

◗◗ Step 1: Spaceborne InSAR is employed to comprehen-
sively detect active slopes (i.e., clusters of points that 
exhibit certain deformational activity [53]) to find po-

tential landslides at a regional scale. The archived and 
newly acquired SAR images (e.g., ESA’s Sentinel-1) are 
interferometrically processed and then analyzed in time 
series. An automatic feature-detection algorithm (pos-
sibly relying on machine learning approaches, e.g., [54] 
and [55]) should be developed to detect potential land-

Satellite InSAR

1 2Landslide Detection at Regional Scales Field Investigation and Assessment of Potential Impact
at Local Scales

~2
50

 km

(a)

(c) (d)

(b)

SAR Satellite Multibands Satellite

UAV

GNSS

GNSS Receiver
Inclinometer

Crackmeter

3

4

Real-Time Landslide Monitoring
at Local Scales

Communication With Local Communities

Data Information

Rain Gauge

GB-SAR

Information Decision

Real-Time Monitoring and
Analysis by Experts

Information to
Local Government

Decision Making Engagement Activities
by Individuals

FIGURE 6. The EO-based landslide EWS. (a) The field investigation to determine geomechanical response properties; (b) the simulation and 
assessment of potential impact; (c) real-time monitoring on displacement, precipitation, and so on; and (d) long-term displacement rate 
monitoring and analysis. GB-SAR: ground-based SAR.
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slides based on the regional deformation rate maps and 
displacement time series. Time series analysis can be 
used to determine the sensitivity of landslide motion to 
external factors such as seasonal precipitation and seis-
mic shaking [23], [56]. First-order geomechanical mod-
eling of landslide behavior based on critical-state soil 
mechanics or rate-and-state friction can provide impor-
tant insights into the stability conditions of landslides 
[57]–[59]. Eventually, such geomechanical analysis may 
allow us to anticipate failure conditions prior to the pro-
nounced accelerations of the tertiary phase [60].

◗◗ Step 2: The potential impacts of active landslides are as-
sessed at a local scale. After the potential landslide ini-
tiation hazard is identified for specific locations, field 
investigations help assess the geological setting of the 
landslide. A landslide dynamics model [61], [62] can 
be applied to predict the speed and run-out extent of 
potential landslide events. The potential landslide sites 
identified in Step 1 can be simulated to determine the 
likely impact on human settlements for each landslide. 
Topographic and sociospatial data can be collated to 
model landslides and assess their impact. A detailed 
local land property map that includes key infrastruc-
tures such as buildings, roads, and power lines and a 
population-distribution map could be generated based 
on existing open source data and community participa-
tion. These will support the impact assessment as well 
as early warning communication with the local commu-
nity. This step also identifies the sites for which real-time 
landslide monitoring (RTLM) is required.

◗◗ Step 3: A multisensor integrated system is installed  
that combines remote sensing methods and in situ sen-
sors for the specific sites where RTLM is needed. In situ 
sensors can be carefully located according to the land-
slide motion information provided by InSAR to achieve 
accurate continuous monitoring in time and space for 
all hazardous landslides in a region, integrating these 
two systems while minimizing the associated costs by 
limiting the number of in situ sensors. High-rate (e.g., 
1 Hz) raw in situ observations (e.g., GNSS and crack-
meters) can be transmitted to a data center via wire-
less communication infrastructure and are processed 
in real time with short baselines in a kinematic mode. 
Recent experiments with GNSS suggest that ~2–4 mm 
horizontal and 4–8 mm vertical accuracy is possible 
at 1 Hz [63], [65]. Real-time monitoring is particularly 
important since existing observations on tertiary creep 
suggest that the timescale for this phase ranges from 
minutes to months [44], [65], [66]. Thus, the data should 
be transmitted back to the data center in real time and 
processed automatically. However, these in situ obser-
vations are not only useful for identifying the onset of 
tertiary creep; they can also be used in the secondary 
phase to determine the sensitivity of landslide motion 
to external factors at a higher resolution and precision 
than was possible in Stage 1 [23], [56]. The mechanical 

models introduced in Stage 1 can be refined and cali-
brated by monitoring environmental factors and geo-
logical–geotechnical parameters such as pore pressure 
in soils (Table 1) [13], [67].

◗◗ Step 4: The ultimate objective of an EWS is to communi-
cate through timely and useful warnings to the people 
in local communities who are exposed to a landslide 
hazard. Thus, engagement and communication with 
local communities should be a key feature of an effec-
tive landslide EWS. A large body of work on the social 
science of early warning already exists that provides 
useful insights, explanations for unexpected EWS fail-
ure and potential secondary disasters, and examples 
of good practice. Experience from past disasters world-
wide suggests that emergency preparedness, planning, 
and response are some of the weakest elements in many 
existing EWSs [99]. In particular, the link between the 
technical capacity to issue a warning and the public’s 
capacity and commitment to respond effectively to the 
warning is often weak, which limits the warning’s abil-
ity to trigger an appropriate and effective response from 
the community. Warning systems that mainly focus on 
technical aspects and ignore social factors generally 
do not work effectively because the warnings do not 
prompt effective action due to a lack of community buy-
in and to poor engagement and operation results. Both 
academics and practitioners widely agree that EWSs are 

TABLE 1. COMMONLY USED TECHNOLOGIES FOR LANDSLIDE 
MONITORING. 

OBSERVATION 
TYPES TECHNOLOGY PRECISION EXAMPLES

Displacement Spaceborne InSAR mm-cm [68] [21], [25], [69], 
[70]

Airborne InSAR mm-cm [71] [71], [72]

Ground-based InSAR mm-cm [73] [66], [73], [74]

UAV photogrammetry ~6cm [75] [75], [76]

GNSS mm-cm [77] [70], [84]

Optical image matching cm-m [78] [78], [79]

Crackmeter mm-cm [80] [81], [82]

Extensometer ~3 mm [84] [84], [85]

In-place inclinometer ~8 mm [68] [10], [86], [87]

Tiltmeter ~0.1° [13] [13], [82], [90]

Total station ~±1 ppm [80] [80], [88]

Terrestrial Lidar ~0.2–0.5 m [83] [83], [89]

Shape acceleration 
array

±1.5 mm/ 
30 m [90]

[13], [83], [90]

Active waveguides mm [91] [13], [91]

Seismometer — [92], [93]

Pore pressure Piezometer — [13], [94], [95]

TDR — [96], [97]

Tensiometer (soil 
hygrometer)

— [57], [97]

Precipitation Rain gauge — [82], [98]

TDR: time domain reflectometry.
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most effective when they are built in collaboration with 
those at risk, rather than imposed from outside.

OUTLOOK
There are three big questions for landslide forecasting and 
early warning to address:

Big question 1: Where are potential landslides? We are en-
tering an exciting new era of EO data. Recent advances in 
satellite radar and in situ sensors (e.g., GNSS) have allowed 
us to collect high-quality measurements to quantify Earth’s 
surface displacements and then address this question over 
entire mountain ranges, at space and time scales that are 
finer than ever before and at a relatively low cost. In an EO-
based landslide EWS, the relatively short repeat cycles of cur-
rent SAR missions still represent InSAR’s limitation to detect 
potential landslides. However, the Geosynchronous Conti-
nental Land-Atmosphere Sensing System, one of three ideas 
for Earth Explorer accepted by ESA’s Program Board for EO to 
compete as the tenth Earth Explorer mission, might provide 
a solution. Considerable work has been done to interfero-
metrically process massive SAR data sets in an automatic way 
[100], but more should be done to investigate how to detect 
potential landslides from big SAR data in a consistent, reli-
able, and smart manner. Machine learning technologies have 
been widely implemented in the field of computer science 
and remote sensing [101], [102], where statistical techniques 
are employed to learn specific and complex tasks from given 
data. Recent studies report that machine learning can iden-
tify signals associated with geohazards from large data sets 
[103], which suggests that integrating machine learning with 
EO technologies could be one encouraging solution to auto-
matic landslide detection. To address this first big question, 
there is an urgent need to answer the following additional 
questions: 1) At what percentage are the detected landslides 
true positives? 2) What is the percentage of the missing land-
slides (false negatives)? 3) In which scenarios are landslides 
more likely be successfully detected?

Big question 2: When will landslides occur? A range of state-
of-the-art landslide initiation and runout models have en-
abled us not only to estimate the location and geometry 
of potential landslides but also to assess their potential 
impacts. Predicting when landslides will occur remains a 
grand challenge. There have been a limited number of suc-
cessful case studies, including those for the 2017 Heifangtai 
landslide. In these cases, deformation anomalies (accelera-
tion or a change in pattern) were observed prior to failure 
and have been recognized as precursors. However, accurate 
EWSs require the identification of a diagnostic signature 
that can be somewhat uniquely related to impending fail-
ure. The degree to which this signature is unique defines 
the confidence with which a warning can be issued, which 
represents a much stricter definition of precursor. Further re-
search is required to constrain the relationship between ac-
celerated displacement and landslide failure and thus to es-
tablish these diagnostic signatures with more confidence. 
We suggest that widespread and long-term deformation 

monitoring, combined with landslide observations, will 
enable considerable progress in addressing this problem.

Big question 3: What is the best way to reduce landslide disas-
ter risk? The experience of the cooperation between experts 
and local communities in the Dangchuan 4# landslide has 
improved our understanding of best practices for communi-
ty-based disaster risk management. How to best coproduce 
a site-specific warning system with both local experts and 
members of at-risk communities to reduce landslide disaster 
risk remains an open challenge for the entire community.
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