1,029 research outputs found

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    The Human Fungal Pathogen Cryptococcus neoformans Escapes Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3 Complex-Mediated Actin Polymerisation

    Get PDF
    The lysis of infected cells by disease-causing microorganisms is an efficient but risky strategy for disseminated infection, as it exposes the pathogen to the full repertoire of the host's immune system. Cryptococcus neoformans is a widespread fungal pathogen that causes a fatal meningitis in HIV and other immunocompromised patients. Following intracellular growth, cryptococci are able to escape their host cells by a non-lytic expulsive mechanism that may contribute to the invasion of the central nervous system. Non-lytic escape is also exhibited by some bacterial pathogens and is likely to facilitate long-term avoidance of the host immune system during latency. Here we show that phagosomes containing intracellular cryptococci undergo repeated cycles of actin polymerisation. These actin ‘flashes’ occur in both murine and human macrophages and are dependent on classical WASP-Arp2/3 complex mediated actin filament nucleation. Three dimensional confocal imaging time lapse revealed that such flashes are highly dynamic actin cages that form around the phagosome. Using fluorescent dextran as a phagosome membrane integrity probe, we find that the non-lytic expulsion of Cryptococcus occurs through fusion of the phagosome and plasma membranes and that, prior to expulsion, 95% of phagosomes become permeabilised, an event that is immediately followed by an actin flash. By using pharmacological agents to modulate both actin dynamics and upstream signalling events, we show that flash occurrence is inversely related to cryptococcal expulsion, suggesting that flashes may act to temporarily inhibit expulsion from infected phagocytes. In conclusion, our data reveal the existence of a novel actin-dependent process on phagosomes containing cryptococci that acts as a potential block to expulsion of Cryptococcus and may have significant implications for the dissemination of, and CNS invasion by, this organism.\ud \u

    Ellipsoidal analysis of coordination polyhedra

    Get PDF
    The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d(5) effect' for Fe(3+) ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules

    Congenital aplasia of the optic chiasm and esophageal atresia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The complete absence of the chiasm (chiasmal aplasia) is a rare clinical condition. Hypoplasia of the optic nerve and congenital nystagmus are almost invariably associated characteristics. Microphthalmos or anophthalmos are common features in chiasmal aplasia, while central nervous system abnormalities are less frequent. Esophageal atresia can be isolated or syndromic. In syndromic cases, it is frequently associated with cardiac, limb, renal or vertebral malformations and anal atresia. More rarely, esophageal atresia can be part of anophthalmia-esophageal-genital syndrome, which comprises anophthalmia or microphthalmia, genital abnormalities, vertebral defects and cerebral malformations. Here, a previously unreported case of chiasmal aplasia presenting without microphthalmos and associated with esophageal atresia is described.</p> <p>Case presentation</p> <p>Aplasia of the optic chiasm was identified in a Caucasian Italian 8-month-old boy with esophageal atresia. An ultrasound examination carried out at 21 weeks' gestation revealed polyhydramnios. Intrauterine growth retardation, esophageal atresia and a small atrial-septal defect were subsequently detected at 28 weeks' gestation. Repair of the esophageal atresia was carried out shortly after birth. A jejunostomy was carried out at four months to facilitate enteral feeding. The child was subsequently noted to be visually inattentive and to be neurodevelopmentally delayed. Magnetic resonance imaging revealed chiasmal aplasia. No other midline brain defects were found. His karyotype was normal.</p> <p>Conclusion</p> <p>If achiasmia is a spectrum, our patient seems to depict the most severe form, since he appears to have an extremely severe visual impairment. This is in contrast to most of the cases described in the literature, where patients maintain good--or at least useful-- visual function. To the best of our knowledge, the association of optic nerve hypoplasia, complete chiasmal aplasia, esophageal atresia and atrial-septal defect, choanal atresia, hypertelorism and psychomotor retardation has never been described before.</p

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido
    corecore