345 research outputs found

    Local versus global equilibration near the bosonic Mott-superfluid transition

    Full text link
    We study the response of trapped two dimensional cold bosons to time dependent lattices. We find that in lattice ramps from 11 (superfluid, ℏ/Ui=3\hbar/U_{\text{i}} = 3ms, ℏ/Ji=45\hbar/J_{\text{i}} = 45ms) to 16 recoils (Mott, ℏ/Uf=2\hbar/U_{\text{f}} = 2ms, ℏ/Jf=130\hbar/J_{\text{f}} = 130ms) the local number fluctuations remains at their equilibrium values if ramps are slower than 3 ms. Global transport, however, is much slower (1s), especially in the presence of Mott shells. This separation of timescales has practical implications for cold atom experiments and cooling protocols.Comment: 4 pages, 4 figs. 6 subfigure

    Universality class of quantum criticality in the two-dimensional Hubbard model at intermediate temperatures (t2/Uâ‰ȘTâ‰Ștt^2/U\ll T\ll t)

    Full text link
    We show that the dilute Fermi gas quantum critical universality class quantitatively describes the Mott/metal crossover of the two-dimensional Hubbard model for temperatures somewhat less than (roughly half) the tunneling but much greater than (roughly twice) the superexchange energy. We calculate the observables expected to be universal near the transition --- density and compressibility --- with numerically exact determinantal quantum Monte Carlo. We find they are universal functions of the chemical potential. Despite arising from the strongly correlated regime of the Hubbard model, these functions are given by the weakly interacting, dilute Fermi gas model. These observables and their derivatives are the only expected universal static observables of this universality class, which we also confirm by verifying there is no scaling collapse of the kinetic energy, fraction of doubly occupied sites, and nearest neighbor spin correlations. Our work resolves the universality class of the intermediate temperature Mott/metal crossover, which had alternatively been proposed to be described by more exotic theories. However, in the presence of a Zeeman magnetic field, we find that interplay of spin with itinerant charge can lead to physics beyond the dilute Fermi gas universality class.Comment: Main text: 4 pages, 2 figures (6 panels). Supplementary info.: 2 pages, 3 figures (7 panels

    Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system

    Get PDF
    Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.Comment: 12 figure

    A Novel Dielectric Anomaly in Cuprates and Nickelates: Signature of an Electronic Glassy State

    Full text link
    The low-frequency dielectric response of hole-doped insulators La_{2}Cu_{1-x}Li_{x}O_{4} and La_{2-x}Sr_{x}NiO_{4} shows a large dielectric constant \epsilon ^{'} at high temperature and a step-like drop by a factor of 100 at a material-dependent low temperature T_{f}. T_{f} increases with frequency and the dielectric response shows universal scaling in a Cole-Cole plot, suggesting that a charge glass state is realized both in the cuprates and in the nickelates.Comment: 5 pages, 4 figure

    Exploring quantum criticality based on ultracold atoms in optical lattices

    Full text link
    Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly-correlated systems near the ground state. Cold atoms in optical lattices, in particular, represent a paradigmatic system, for which the quantum phase transition between the superfluid and Mott insulator states can be externally induced by tuning the microscopic parameters. In this paper, we describe our approach to study quantum criticality of cesium atoms in a two-dimensional lattice based on in situ density measurements. Our research agenda involves testing critical scaling of thermodynamic observables and extracting transport properties in the quantum critical regime. We present and discuss experimental progress on both fronts. In particular, the thermodynamic measurement suggests that the equation of state near the critical point follows the predicted scaling law at low temperatures.Comment: 15 pages, 6 figure

    A Support Group for Inpatient Abused Adolescents

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75359/1/j.1744-6171.1990.tb00438.x.pd

    A two-dimensional programmable tweezer array of fermions

    Full text link
    We prepare high-filling two-component arrays of up to fifty fermionic atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. Full spin- and density-resolved readout of individual sites allows us to post-select near-zero entropy initial states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable fermionic quantum simulator
    • 

    corecore