2,062 research outputs found

    Expected rates with mini-arrays for air showers

    Get PDF
    As a guide in the design of mini-arrays used to exploit the Linsley effect in the study of air showers, it is useful to calculate the expected rates. The results can aid in the choice of detectors and their placement or in predicting the utility of existing detector systems. Furthermore, the potential of the method can be appraised for the study of large showers. Specifically, we treat the case of a mini-array of dimensions small enough compared to the distance of axes of showers of interest so that it can be considered a point detector. The input information is taken from the many previous studies of air showers by other groups. The calculations will give: (1) the expected integral rate, F(sigma, rho), for disk thickness, sigma, or rise time, t sub 1/2, with local particle density, rho, as a parameter; (2) the effective detection area A(N) with sigma (min) and rho (min) and rho (min) as parameters; (3) the expected rate of collection of data F sub L (N) versus shower size, N

    A mini-array for large air showers

    Get PDF
    A mini-array that utilizes the Linsley effect is proposed for the measurement of large air showers. An estimate of the detectable shower rates for various shower sizes is made. Details of the detection and data collection systems are also described

    Study of a mini-array for the Linsley effect in cosmic-ray air showers

    Full text link
    The arrival-time distribution of shower particles far from the core has been measured as a function of shower axis distance at the Akeno Observatory by a cluster of 64 scintillators (total area 16 m2) located near the centre of the 1 km2 array. More than 3500 1 km2 array events and about 300 20 km2 array events have been analysed. The authors compare parameters tau (exponential fit to arrival times), sigma (conventional dispersion) and tr (rise time) for the specification of the spread in arrival times. From a measurement of time spread, the shower axis distance can be determined with an uncertainty of 25 to 30% with this detector system. The resulting uncertainty in shower size, including a 60% uncertainty in particle density measurement, is 120 to 140%. The resultant smearing of changes in slope of the frequency spectrum of incident showers is calculated. The smearing masks all but the gross changes in slope. The method may be useful for anisotropy studies, when a system for finding direction is included.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49016/2/jgv15i1p113.pd

    Suite of simple metrics reveals common movement syndromes across vertebrate taxa

    Get PDF
    ecause empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized movement syndromes representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging)

    Measurement of the local density spectrum

    Get PDF
    Since there is still disagreement among the results of various groups, a measurement of the local density spectrum with a close-packed array of four scintillators, each of area 0.14 sq cm was made. Data are taken with conventional electronics, supervised by an on-line microcomputer. The data are stored on audio cassettes and analyzed with the aid of another microcomputer. Since four independent samples for each shower are available, uncertainties inherent in results from many earlier experiments can be minimized

    Functional genomics with a comprehensive library of transposon mutants for the sulfate-reducing bacterium Desulfovibrio alaskensis G20.

    Get PDF
    UnlabelledThe genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5' RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D. alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance.ImportanceSulfate-reducing bacteria contribute to global nutrient cycles and are a nuisance for the petroleum industry. Despite their environmental and industrial significance, the genomes of sulfate-reducing bacteria remain poorly characterized. Here, we describe a genetic approach to fill gaps in our knowledge of sulfate-reducing bacteria. We generated a large collection of archived, transposon mutants in Desulfovibrio alaskensis G20 and used the phenotypes of these mutant strains to infer the function of genes involved in gene regulation, methionine biosynthesis, and choline utilization. Our findings and mutant resources will enable systematic investigations into gene function, energy generation, stress response, and metabolism for this important group of bacteria

    The Antiferromagnetic Band Structure of La2CuO4 Revisited

    Full text link
    Using the Becke-3-LYP functional, we have performed band structure calculations on the high temperature superconductor parent compound, La2CuO4. Under the restricted spin formalism (rho(alpha) equal to rho(beta)), the R-B3LYP band structure agrees well with the standard LDA band structure. It is metallic with a single Cu x2-y2/O p(sigma) band crossing the Fermi level. Under the unrestricted spin formalism (rho(alpha) not equal to rho(beta)), the UB3LYP band structure has a spin polarized antiferromagnetic solution with a band gap of 2.0 eV, agreeing well with experiment. This state is 1.0 eV (per formula unit) lower than that calculated from the R-B3LYP. The apparent high energy of the spin restricted state is attributed to an overestimate of on-site Coulomb repulsion which is corrected in the unrestricted spin calculations. The stabilization of the total energy with spin polarization arises primarily from the stabilization of the x2-y2 band, such that the character of the eigenstates at the top of the valence band in the antiferromagnetic state becomes a strong mixture of Cu x2-y2/O p(sigma) and Cu z2/O' p(z). Since the Hohenberg-Kohn theorem requires the spin restricted and spin unrestricted calculations give exactly the same ground state energy and total density for the exact functionals, this large disparity in energy reflects the inadequacy of current functionals for describing the cuprates. This calls into question the use of band structures based on current restricted spin density functionals (including LDA) as a basis for single band theories of superconductivity in these materials.Comment: 13 pages, 8 figures, to appear in Phys. Rev. B, for more information see http://www.firstprinciples.co

    The Importance of Static Correlation in the Band Structure of High Temperature Superconductors

    Full text link
    Recently we presented a new band structure for La(2-x)Sr(x)CuO(4) and other high temperature superconductors in which a second narrow band was seen to cross the primary band at the Fermi level. The existence of this second Fermi level band is in complete disagreement with the commonly accepted LDA band structure. Yet it provided a crucial piece of physics which led to an explanation for superconductivity and other unusual phenomena in these materials. In this work we present details as to the nature of the failure of conventional methods in deriving the band structure of the cuprates. In particular, we use a number of chemical analogues to describe the problem of static correlation in the band structure calculations and show how this can be corrected with the predictable outcome of a Fermi level band crossing.Comment: The Journal of Physical Chemistry, in press. References and figures updated. See www.firstprinciples.com for more information related to this wor

    Electron Correlation and the c-axis Dispersion of Cu d_z^2: a New Band Structure for High Temperature Superconductors

    Full text link
    Previously we showed the major effect of electron correlation in the cuprate superconductors is to lower the energy of the Cu d_x^2-y^2/O p_sigma (x^2-y^2) band with respect to the Cu d_z^2/O' p_z (z^2) band. In our 2D Hubbard model for La_1.85Sr_0.15CuO_4 (LaSCO), the z^2 band is narrow and crosses the standard x^2-y^2 band just below the Fermi level. In this work, we introduce c-axis dispersion to the model and find the z^2 band to have considerable anisotropic 3D character. An additional hole-like surface opens up in the z^2 band at (0,0,2pi/c) which expands with doping. At sufficient doping levels, a symmetry allowed x^2-y^2/z^2 band crossing along the (0,0)-(pi,pi) direction of the Brillouin zone appears at the Fermi level. At this point, Cooper pairs between the two bands (e.g. (k uparrow x^2-y^2/k downarrow z^2)) can form, providing the basis for the Interband Pairing Theory of superconductivity in these materials.Comment: submitted to Phys. Rev. Lett. Related publications: Phys. Rev. B 58, 12303 (1998); Phys. Rev. B 58, 12323 (1998); cond-mat/9903088; cond-mat/990310
    • …
    corecore