276 research outputs found

    The association between retinal vein ophthalmodynamometric force change and optic disc excavation

    Get PDF
    Aim: Retinal vein ophthalmodynamometric force (ODF) is predictive of future optic disc excavation in glaucoma, but it is not known if variation in ODF affects prognosis. We aimed to assess whether a change in ODF provides additional prognostic information. Methods: 135 eyes of 75 patients with glaucoma or being glaucoma suspects had intraocular pressure (IOP), visual fields, stereo optic disc photography and ODF measured on an initial visit and a subsequent visit at mean 82 (SD 7.3) months later. Corneal thickness and blood pressure were recorded on the latter visit. When venous pulsation was spontaneous, the ODF was recorded as 0 g. Change in ODF was calculated. Flicker stereochronoscopy was used to determine the occurrence of optic disc excavation, which was modelled against the measured variables using multiple mixed effects logistic regression. Results: Change in ODF (p=0.046) was associated with increased excavation. Average IOP (p=0.66) and other variables were not associated. Odds ratio for increased optic disc excavation of 1.045 per gram ODF change (95% CI 1.001 to 1.090) was calculated. Conclusion: Change in retinal vein ODF may provide additional information to assist with glaucoma prognostication and implies a significant relationship between venous change and glaucoma patho-physiology

    The rarity of terrestrial gamma-ray flashes

    Get PDF
    We report on the first search for Terrestrial Gamma-ray Flashes (TGFs) from altitudes where they are thought to be produced. The Airborne Detector for Energetic Lightning Emissions (ADELE), an array of gamma-ray detectors, was flown near the tops of Florida thunderstorms in August/September 2009. The plane passed within 10 km horizontal distance of 1213 lightning discharges and only once detected a TGF. If these discharges had produced TGFs of the same intensity as those seen from space, every one should have been seen by ADELE. Separate and significant nondetections are established for intracloud lightning, negative cloud-to-ground lightning, and narrow bipolar events. We conclude that TGFs are not a primary triggering mechanism for lightning. We estimate the TGF-to-flash ratio to be on the order of 10^(−2) to 10^(−3) and show that TGF intensities cannot follow the well-known power-law distribution seen in earthquakes and solar flares, due to our limits on the presence of faint events

    A new layout optimization technique for interferometric arrays, applied to the MWA

    Get PDF
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    The Murchison Widefield Array Transients Survey (MWATS). A search for low frequency variability in a bright Southern hemisphere sample

    Get PDF
    We report on a search for low-frequency radio variability in 944 bright (> 4Jy at 154 MHz) unresolved, extragalactic radio sources monitored monthly for several years with the Murchison Widefield Array. In the majority of sources we find very low levels of variability with typical modulation indices < 5%. We detect 15 candidate low frequency variables that show significant long term variability (>2.8 years) with time-averaged modulation indices M = 3.1 - 7.1%. With 7/15 of these variable sources having peaked spectral energy distributions, and only 5.7% of the overall sample having peaked spectra, we find an increase in the prevalence of variability in this spectral class. We conclude that the variability seen in this survey is most probably a consequence of refractive interstellar scintillation and that these objects must have the majority of their flux density contained within angular diameters less than 50 milli-arcsec (which we support with multi-wavelength data). At 154 MHz we demonstrate that interstellar scintillation time-scales become long (~decades) and have low modulation indices, whilst synchrotron driven variability can only produce dynamic changes on time-scales of hundreds of years, with flux density changes less than one milli-jansky (without relativistic boosting). From this work we infer that the low frequency extra-galactic southern sky, as seen by SKA-Low, will be non-variable on time-scales shorter than one year.Comment: 19 pages, 11 figure

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    The EoR Sensitivity of the Murchison Widefield Array

    Get PDF
    Using the final 128 antenna locations of the Murchison Widefield Array (MWA), we calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum of red- shifted 21 cm emission for a fiducial model and provide the tools to calculate the sensitivity for any model. Our calculation takes into account synthesis rotation, chro- matic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. For the fiducial model, the MWA will be capable of a 14{\sigma} detection of the EoR signal with one full season of observation on two fields (900 and 700 hours).Comment: 5 pages, 4 figures, 1 table, Accepted for publication in MNRAS Letters. Supplementary material will be available in the published version, or by contacting the author

    The rarity of terrestrial gamma‐ray flashes: 2. RHESSI stacking analysis

    Full text link
    We searched for gamma-ray emission from lightning using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite by identifying times when RHESSI was near over 2 million lightning discharges localized by the Worldwide Lightning Location Network (WWLLN). We then stacked together the gamma-ray arrival times relative to the sferic times, correcting for light propagation time to the satellite. The resulting stacked gamma-ray time profile is sensitive to an average level of gamma-ray emission per lightning discharge far lower than what can be recognized above background for a single terrestrial gamma-ray flash (TGF). The summed signal from presumed small, previously unknown TGFs simultaneous with WWLLN discharges is remarkably weak: for the region from 0 to 300 km beneath RHESSI’s footprint, (6.2±3.8)×10-3 detector counts/discharge are measured, as opposed to a typical range of 12-50 detector counts for TGFs identified solely from the gamma-ray signal. Under the assumption of a broken power law differential distribution of TGF intensities, we find that the index must harden dramatically or cut off just below the sensitivity limit of current satellites and that for most scenarios less than 1% of lightning can produce a TGF that belongs anywhere in the same distribution as those that are observable. For the minority of scenarios where more than a few percent of flashes produce a TGF, most of these “TGFs” are less than 10-4 of the luminosity of the faintest RHESSI TGFs and therefore closer to the luminosity of lightning stepped leaders. The rarity of TGFs holds not only for TGFs simultaneous with the sferic observed by WWLLN but also for any time within 10 ms of the sferic, allowing (for example) for the possibility that different events within the upward propagation of a negative leader in positive intracloud lightning triggered the TGF and WWLLN’s detection

    The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies

    Full text link
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.Comment: Submitted to PASA. 11 figures, 2 table

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
    corecore