20 research outputs found

    Linear instabilities of a two-layer geostrophic surface front near a wall

    Get PDF
    The development of linear instabilities on a geostrophic surface front in a two-layer primitive equation model on an ƒ-plane is studied analytically and numerically using a highly accurate differential shooting method. The basic state is composed of an upper layer in which the mean flow has a constant potential vorticity, and a quiescent lower layer that outcrops between a vertical wall and the surface front (defined as the line of intersection between the interface that separates the two layers and the ocean\u27s surface). The characteristics of the linear instabilities found in the present work confirm earlier results regarding the strong dependence of the growth rate (σi) on the depth ratio r (defined as the ratio between the total ocean depth and the upper layer\u27s depth at infinity) for r ≥ 2 and their weak dependence on the distance L between the surface front and the wall. These earlier results of the large r limit were obtained using a much coarser, algebraic, method and had a single maximum of the growth rate curve at some large wavenumber k. Our new results, in the narrow range of 1.005 ≤ r ≤ 1.05, demonstrate that the growth rate curve displays a second lobe with a local (secondary) maximum at a nondimensional wavenumber (with the length scale given by the internal radius of deformation) of 1.05. A new fitting function 0.183 r-0.87is found for the growth rate of the most unstable wave (σimax ) for r ranging between 1.001 and 20, and for L \u3e 2 Rd (i.e.where the effect of the wall becomes negligible). Therefore, σimax converges to a finite value for |r — 1 | \u3c\u3c 1 (infinitely thin lower layer). This result differs from quasi-geostrophic, analytic solutions that obtain for the no wall case since the QG approximation is not valid for very thin layers. In addition, an analytical solution is derived for the lower-layer solutions in the region between the wall and the surface front where the upper layer is not present. The weak dependence of the growth rate on L that emerges from the numerical solution of the eigenvalue problem is substantiated analytically by the way L appears in the boundary conditions at the surface front. Applications of these results for internal radii of deformation of 35– 45 km show reasonable agreement with observed meander characteristics of the Gulf Stream downstream of Cape Hatteras. Wavelengths and phase speeds of (180 –212 km, 39 –51 km/day) in the vicinity of Cape Hatteras were also found to match with the predicted dispersion relationships for the depth-ratio range of 1+ \u3c r \u3c 2

    Submesoscale dispersion in the vicinity of the Deepwater Horizon spill

    Full text link
    Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 meters to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. \textcolor{black} {Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200m−-50km scales and clearly indicate that dispersion at the submesoscales is \textit{local}, driven predominantly by energetic submesoscale fluctuations.} The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.Comment: 9 pages, 6 figure

    Ocean convergence and the dispersion of flotsam

    Full text link
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Ocean convergence and the dispersion of flotsam

    Get PDF
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Large eddy simulations of mixed layer instabilities and sampling strategies

    No full text
    â–º Large eddy simulations of mixed layer instabilities are conducted. â–º Flow fields are sampled using Lagrangian particles and passive tracers. â–º Lagrangian platforms are found to be effective in sampling submesoscale flows. Recognizing the potential role played by submesoscale processes in both the energy cascade in the ocean and biogeochemical transport, we conduct a series of large eddy simulations of isolated mixed layer instabilities. The primary objective is to generate freely evolving velocity and density fields representative of submesoscale flows and then use these to examine potential observational sampling strategies. Mixed layer instabilities are explored in two parameter regimes: a strongly-stratified regime which results in a system with surface-intensified eddies and high vertical shear, and a weakly-stratified regime exhibiting weaker, smaller scale eddies that penetrate across the entire domain depth as Taylor columns. Analysis of a variety of mixing measures derived from both particle and tracer based sampling strategies indicates the differing importance of vertical processes in the two flow regimes

    How Does Drifter Position Uncertainty Affect Ocean Dispersion Estimates?

    No full text
    Abstract To develop methodologies to maximize the information content of Lagrangian data subject to position errors, synthetic trajectories produced by both a large-eddy simulation (LES) of an idealized submesoscale flow field and a high-resolution Hybrid Coordinate Ocean Model simulation of the North Atlantic circulation are analyzed. Scale-dependent Lagrangian measures of two-particle dispersion, mainly the finite-scale Lyapunov exponent [FSLE; λ(δ)], are used as metrics to determine the effects of position uncertainty on the observed dispersion regimes. It is found that the cumulative effect of position uncertainty on λ(δ) may extend to scales 20–60 times larger than the position uncertainty. The range of separation scales affected by a given level of position uncertainty depends upon the slope of the true FSLE distribution at the scale of the uncertainty. Low-pass filtering or temporal subsampling of the trajectories reduces the effective noise amplitudes at the smallest spatial scales at the expense of limiting the maximum computable value of λ. An adaptive time-filtering approach is proposed as a means of extracting the true FSLE signal from data with uncertain position measurements. Application of this filtering process to the drifters with the Argos positioning system released during the LatMix: Studies of Submesoscale Stirring and Mixing (2011) indicates that the measurement noise dominates the dispersion regime in λ for separation scales δ < 3 km. An expression is provided to estimate position errors that can be afforded depending on the expected maximum λ in the submesoscale regime
    corecore