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Linear instabilities of a two-layer geostrophic surface front
near a wall

by Angelique C. Haza1,2, Nathan Paldor1,3 and Arthur J. Mariano1

ABSTRACT
The development of linear instabilities on a geostrophic surface front in a two-layer primitive

equation model on an f-plane is studied analytically and numerically using a highly accurate
differential shooting method. The basic state is composed of an upper layer in which the mean flow
has a constant potential vorticity, and a quiescent lower layer that outcrops between a vertical wall
and the surface front (defined as the line of intersection between the interface that separates the two
layers and the ocean’s surface). The characteristics of the linear instabilities found in the present
work confirm earlier results regarding the strong dependence of the growth rate (�i) on the depth
ratio r (defined as the ratio between the total ocean depth and the upper layer’s depth at infinity) for
r � 2 and their weak dependence on the distance L between the surface front and the wall. These
earlier results of the large r limit were obtained using a much coarser, algebraic, method and had a
single maximum of the growth rate curve at some large wavenumber k. Our new results, in the
narrow range of 1.005 � r � 1.05, demonstrate that the growth rate curve displays a second lobe
with a local (secondary) maximum at a nondimensional wavenumber (with the length scale given by
the internal radius of deformation) of 1.05. A new “fitting function” 0.183 r�0.87 is found for the
growth rate of the most unstable wave (�imax) for r ranging between 1.001 and 20, and for L � 2 Rd

(i.e. where the effect of the wall becomes negligible). Therefore, �imax converges to a finite value for
�r � 1� �� 1 (infinitely thin lower layer). This result differs from quasi-geostrophic, analytic
solutions that obtain for the no wall case since the QG approximation is not valid for very thin layers.
In addition, an analytical solution is derived for the lower-layer solutions in the region between the
wall and the surface front where the upper layer is not present. The weak dependence of the growth
rate on L that emerges from the numerical solution of the eigenvalue problem is substantiated
analytically by the way L appears in the boundary conditions at the surface front. Applications of
these results for internal radii of deformation of 35–45 km show reasonable agreement with observed
meander characteristics of the Gulf Stream downstream of Cape Hatteras. Wavelengths and phase
speeds of (180–212 km, 39–51 km/day) in the vicinity of Cape Hatteras were also found to match
with the predicted dispersion relationships for the depth-ratio range of 1� � r � 2.
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1. Introduction

Observations of Gulf Stream meanders (or time-dependent wavelike lateral displace-
ments) have revealed a broad variability spectrum, the characteristics of which vary widely
depending on the exact location and time of observation along the Stream. The dominant
meanders south of Cape Hatteras have wavelengths of 100–250 km and downstream
propagating phase speeds of 30–45 km/day, with weekly and 3–4 day periods (Brooks and
Bane, 1981). Tracey and Watts (1986) find rapid growth rates near Cape Hatteras in two
separate bands for periods and wavelengths of 4–5 days, 180–230 km and 10–33 days,
300–500 km, with downstream propagation phase speeds increasing from 14 to 45 km/
day. Between 70W and 74W, Gulf Stream meanders exhibit rapid downstream growth,
with a maximum corresponding to 3-day e-folding times for wavelengths and periods of
260 km and 8 days (Kontoyiannis and Watts, 1994), while large amplitude meanders east
of 70W were observed with 200–400 km wavelengths and propagation speeds of 5–10 km/
day (Halliwell and Mooers, 1983). At 68W, meanders tend to stall and form large
amplitude troughs, resulting in the pinching off of eddies through a baroclinic conversion
process (Cronin and Watts, 1996; Cronin, 1996).

Linear instability theory is commonly invoked to explain the observed growth of
meander’s amplitude in a geostrophic current. Following the pioneering work of Orlanski
(1968), analytical and numerical studies of linear instabilities have been reasonably
successful in reproducing the characteristics of Gulf Stream meanders identified as
unstable waves, and originating from the growth of wavelike disturbances from the mean
state of the flow (Orlanski, 1969; Killworth, 1983; Killworth et al., 1984; Johns, 1988;
Barth, 1989a,b; Xue and Mellor, 1993; Feliks and Ghil, 1996; Boss et al., 1996; Paldor and
Ghil, 1997; Kontoyiannis, 1997). Simple idealized configurations employed in linear
instability theories are 1-1/2 and 2 layer QG or shallow-water models with an upper layer,
geostrophic front overlying a motionless lower layer and with a separating interface that
can possibly outcrop to the sea surface. One of the main instability factors for a fixed
potential vorticity front in the upper layer was found to be the relative thickness of the
lower layer: Paldor (1983) showed that the front of a single layer with uniform potential
vorticity is stable when the motionless lower layer is infinitely deep. Instabilities can also
be generated in a reduced-gravity model with a geostrophic front where the potential
vorticity is not constant (Killworth and Stern, 1982; Griffith et al., 1982; Hayashi and
Young, 1987; Paldor and Ghil, 1997). The instability criteria differ, depending on the
model used: a change of sign in the basic state potential vorticity is required for instability
in the QG-approximation (Pedlosky, 1987), while Killworth (1983) showed that instabili-
ties in a primitive equation model can develop for a fast decaying infinite front where the
potential vorticity slightly decreases toward the front. However, the calculated growth
rates of the unstable modes in 1-layer models are much smaller than those derived from a
2-layer configuration (Phillips, 1954; Orlanski, 1969; Killworth et al., 1984), or observed
in laboratory experiments (Griffith and Linden, 1982; Chia et al., 1982) all of which have
an active lower layer. Killworth et al. (1984) showed that when the lower layer has a finite
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vertical thickness, the geostrophic front destabilizes for any potential vorticity distribution.
In general, the growth of the instabilities is significantly higher for a finite lower-layer
depth, as their nature is mostly baroclinic, due to the vertical shear of the horizontal
velocity. Studies of lateral boundary (e.g. coasts) effects have been carried out with a
two-layer shallow-water model (i.e. Barth, 1989a,b) with different bottom topographies,
and in a three-layer shallow-water model (Lee and Csanady, 1994), both using a vertical
wall to represent a coastal boundary parallel to the outcropping front. In both studies, the
wall reduces the instabilities’ growth rates provided it is located within one radius of
deformation from the surface front (i.e. the outcropping line of the lower layer).

In this work, we focus on the stabilization of a geostrophic surface front with constant
potential vorticity in the vicinity (within a few radii of deformation) of a vertical wall in a
two-layer shallow-water model with flat bottom. As in all previous studies the domain is
bounded by a vertical wall so that the no-flow boundary condition is applied at the same
location in both layers. The addition of the wall is the main difference between this study
and the configuration studied by Killworth et al. (1984). Barth (1989a,b) has also included
a coast in his instability calculations, but his eigenvalue problem was solved algebraically
by crudely approximating derivatives by their finite difference analogue. Thus, the
precision of Barth’s method depends significantly on the spatial discretization of the
equations so that higher accuracy can only be achieved by increasing the dimension of the
matrix whose (complex) eigenvalues provide the sought growth rate. Instead, the differen-
tial shooting method employed in the present work is not restricted to coarse spatial
resolution, which allows us to explore the more critical cases of relatively thin lower
layers, and very long waves. As a result, we will show that some quantitative differences
appear in the characteristics of the instabilities in the two methods. More significantly for
depth ratios close to 1 the differences between the instability characteristics in the two
methods are qualitative.

The paper is organized as follows: The formulation of the problem is described in
Section 2. The numerical method used for solving the analytical equations are explained in
Section 3a and the results are presented in Section 3b. Discussion of the results and
comparison with Gulf Stream’s observations are presented in Section 4 and summarized in
Section 5.

2. Model

The configuration studied in this paper consists of a surface front in a 2-layer
shallow-water model in an ocean with constant total depth, H, and with densities �1 and
�2 � �1 in the upper and lower layers, respectively. The upper layer has a geostrophic zonal
mean flow U( y) (cf Fig. 1) while the lower layer is motionless and it outcrops between the
surface front (located along the y � 0 line) and a vertical wall located at a distance y � L
from the front. The purpose of this study is to investigate the development of linear
instabilities of this set-up as an idealized scenario of the Gulf Stream (with the interface
representing the thermocline) flowing at a certain distance (few radii of deformation) from

2004] 641Haza et al.: Linear instabilities on a geostrophic surface front



the continental slope. Since in the Mid-Atlantic Bight west of the Gulf Stream the weak
bottom slope beyond the depth of 4500 m is about two orders of magnitude smaller (10�4

versus 10�2) than the continental slope, it is customary to simplify the topography below
the open ocean as a flat bottom and to approximate the continental slope (upper 400 meter
isobaths) as a vertical wall.

In each layer (denoted by the indices i � 1, 2), the momentum and continuity equations
of the shallow-water model are:

�ui

�t
� ui

�ui

�x
� vi

�ui

�y
� fvi � �

1

�i

�pi

�x

�vi

�t
� ui

�vi

�x
� vi

�vi

�y
� fui � �

1

�i

�pi

�y
(1)

�hi

�t
� hi��ui

�x
�

�vi

�y� � ui

�hi

�x
� vi

�hi

�y
� 0,

where ui and vi are the velocity components in the x and y directions respectively, �i, pi are
the density and pressure, and f is the Coriolis frequency, treated here as a constant.

Typical velocities of 5–10 cm/s below the pycnocline are often neglected with respect to
the 1 m/s average velocities (one order of magnitude higher) of an upper-layer jet like the
Gulf Stream in idealized studies, such as the present one. The mean state is then chosen
such that there is no mean flow in the lower layer, while the potential vorticity is constant in the
upper layer, and equal to the ratio of f over H1, which is the depth of the interface at y � �	.

By assuming a geostrophic balance, u2 � 0, and constant potential vorticity in the upper
layer, the solution for the mean state in the upper layer is therefore:

Figure 1. Model configuration, including a vertical wall at a distance y � L from the geostrophic
front where the lower layer outcrops.
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h1
y� � H1
1 � e
y/Rd�� with y � 0, (2)

where Rd � �gH1/f is the internal radius of deformation, and g � g(�2 � �1/�2) is the
reduced gravity. Thus, h1 vanishes at the frontal line y � 0, and its exponential profile
tends asymptotically to H1 when y3 �	.

The expression of the geostrophic mean flow is then: u1(y) � �(g/f )(�h1(y)/�y) � fRdey/Rd,
which has maximal value at y � 0 (outcropping point) and tends to zero at y � �	.

We nondimensionalize the governing equations by scaling the variables using f�1 as the
time scale, H1 as the scale for the layer thicknesses, and the internal radius of deformation,
Rd, for x and y coordinates. The horizontal velocities are therefore scaled by ( fRd), and
P/� is scaled on �fRd�2.

This choice of scaling leads to simple expressions of the nondimensional mean state in
the upper-layer:

h1* � 1 � ey*

(3)
u1* � ey*,

where * designates nondimensional variables.
Now, a nondimensional perturbation component a* of zero-mean is added to each of

the mean flow variables ui*, vi*, hi*, such that a* �� a� *, so any flow variable a* is in
approximate geostrophic balance.

We then linearize the governing equations about the basic state described above and
after simplification of the notation by dropping the stars from all nondimensional variables
and primes from the nondimensional perturbation variables, we get the following system of
nondimensional equations in the region y � 0:

�u1

�t
� u1

�u1

�x
� v1

�u1

�y
� v1 � �

�p1

�x
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�t
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�x
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�h1
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� 0

(4)
�u2

�t
� v2 � �

�p2
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� u2 � �

�p2

�y

�
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�t
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�y
� 0
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where r � H/H1 (�1) is the depth ratio, h1 � p1 � p2 (hydrostatic approximation), and
h2 � �h1 (rigid-lid approximation).

In the region 0 � y � L only the lower layer exists so the shallow-water equations in
this region are:

�u2

�t
� v2 � �

�p2

�x

�v2

�t
� u2 � �

�p2

�y
(5)

�u2

�x
�

�v2

�y
� 0.

It is assumed now that the perturbation fields have an oscillatory behavior of a wave-like
dependence in time and zonally, such that:


u1, v1, p1, u2, v2, p2� � 
U1
y�, V1
y�, P1
y�, U2
y�, V2
y�, P2
y��eik
x�ct�, (6)

where u1, v1, p1, u2, v2, p2 are the six nondimensional perturbation variables, U1( y),
V1( y), P1( y), U2( y), V2( y), P2( y) are their corresponding amplitudes, k is the
wavenumber of the perturbation, and c � cr � ici is the phase speed.

A substitution of Eq. (6) into the governing equations in both spatial domains (Eqs. (4)
and (5)) eliminates the x and t derivatives of the perturbation variables, which simplifies
the equations as follows:

In region (a) ( y � 0):

�k2
u1 � c�2 �
�u1

�y
� 1�V1 � ik
u1 � c�

�P1

�y
� ikP1 � 0,

h1

�V1

�y
� �k2h1
u1 � c� �

�h1

�y �V1 � ikh1

�P1

�y
� ik
u1 � c�
P1 � P2� � 0,

(7)


1 � k2c2�V2 � ikc
�P2

�y
� ikP2 � 0


r � h1�
�V2

�y
� ��h1

�y
� k2c
r � h1��V2 � ik
r � h1�

�P2

�y
� ikc
P1 � P2� � 0,

and in region (b) (i.e. 0 � y � L):

�ikc
�P2

�y
� 
1 � k2c2�V2 � ikP2 � 0,

(8)
�V2

�y
�

V2

c
�

ik

c
P2 � 0.
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The reduction in the number of unknowns from 6 to 4 in region (a) and from 3 to 2 in region
(b) is achieved by eliminating the perturbation amplitudes U1( y) (in region (a)) and U2( y)
(in both regions), using the x-momentum equations.

It is always preferable to integrate differential equations over a finite domain
instead of an infinite domain. Toward that end, we change the independent variables
from y to z � ey so that 0 � z � 1 in region (a) while 1 � z � zo � el (�eL/Rd) in the
region (b).

The governing equations in region (a) now become:

z
�P1

�z
� �1 � z

z � c
� k2
z � c��V1 �

1

z � c
P1,

z
�V1

�z
� � z

1 � z
�

1 � z

z � c�V1 � � z � c

1 � z
�

1

z � c�P1 �
z � c

1 � z
P2,

(9)

cz
�P2

�z
� �P2 � 
1 � k2c2�V2,

cz
�V2

�z
� �1 �

zc

r � 1 � z�V2 �
c2

r � 1 � z
P1 � �1 �

c2

r � 1 � z�P2,

and in region (b) the governing equations become:

cz
�P2

�z
� �
1 � k2c2�V2 � P2,

(10)

cz
�V2

�z
� V2 � P2,

(the imaginary number i was eliminated by replacing Vj by (i/k)Vj in each layer).
The equations must then satisfy the following boundary conditions:

● At the wall ( z � zo), V2 must vanish for all r, l, k, c.
● At z � 1 (the location of the surface front, which separates the two regions) the lower

layer solutions for V2 must be continuous in the lower-layer velocity fields (but their
derivatives are discontinuous at y � 0/z � 1).

● At z � 0 (i.e. y � �	), all eigenfunctions are finite. Note that for r � 1, the
singularity of the equations at z � 0 is removable but for r � 1, this singularity is
nonremovable.

3. Solution and results

a. Method of solution

In region (b) explicit solutions for V2 and P2 in Eq. (10) exist which can be expressed
as a linear combination of zk and z�k. These explicit solutions introduce the dependence
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of the solutions on L (the dimensional distance between the wall and the surface front)
by imposing a boundary condition on the solutions in region (a). The explicit solutions
in region (b) are:

P2 � Mzo
k� 
kc � 1�� z

zo
� k

� 
kc � 1�� z

zo
��k�

(11)

V2 � Mzo
k�� z

zo
� k

� � z

zo
��k� �

1

kc coth 
k
y � l�� � 1
P2

where M is an arbitrary constant and the last equality in V2 was added only in order to
clarify its structure in the cartesian, dimensional, coordinates y and L.

The singularities at the lateral boundaries of region (a) ( z � 0 and z � 1) are now
considered in order to integrate the solutions:

Near z � 0 ( y 3 � 	), in order for the z-derivatives to be bounded and nontrivial, the
perturbations’ amplitudes must have a power series expansion in z:


V1, P1, V2, P2� � 
V1
˜, P1

˜, V2
˜, P2

˜�z�, (12)

with Re(�) � 0.
We substitute this expansion into the governing equations in region (a) for z �� 1,

which leads to the single quadratic equation for �2:

c2 �
r � 1

c2 �1 � �2c2

1 � k2c2 � c2 � 1��1 � �2c2

1 � k2c2 �
c2

r � 1
� 1� � 0. (13)

Realizing that one of the roots of this equation is (�1
2 � k2) enables us to put this equation

in its canonical form and deduce the second root, which is:

�2
2 � k2 � 
1 � k2c2�

r

r � 1
. (14)

Thus, there exist two independent vectors of solutions near z � 0, i.e. for z � � �� 1:

P1
�1� � P2
˜�k,

V1
�1� � �
1

1 � kc
P2
˜�k, (15)

V2
�1� � �
1

1 � kc
P2
˜�k � V1
�1�,

and
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P1
�2� � �
r � 1�P2
˜��2,

V1
�2� �


r � 1��1 � c�k2 � 
1 � k2c2�
r

r � 1�
1 � k2c2 P2

˜��2, (16)

V2
�2� � �

�1 � c�k2 � 
1 � k2c2�
r

r � 1�
1 � k2c2 P2

˜��2 � �
V1
�2�

r � 1
,

where P2
˜ is an arbitrary constant.

Near z � 1, the differential equation for V1 in system (9) reduces to:


1 � z�
�V1

�z
� V1 � 
1 � c�P1 � 
1 � c�P2, (17)

which cannot be solved explicitly. However, for finite �V1/� z this equation provides a
relationship between V1 and the perturbation pressures P1 and P2 at z � 1. Consequently,
near z � 1 the other variables and their first derivatives can also be expressed as functions
of P1 and P2 only:

�P1

�z
� � 1

1 � c
� k2
1 � c�2�P1 � k2
1 � c�2P2,

V1 � 
1 � c��P2 � P1�,

�P2

�z
� � 1 � k2c2

kc coth 
kl� � 1
� 1� P2

c
, (18)

V2 � �
P2

kc coth 
kl� � 1
,

�V2

�z
�

c

r
P1 �

1

r � 1

kc coth 
kl� � 1
� r � c2�P2

(Note that coth(kl ) is short for ( z0
k � z0

�k)/( z0
k � z0

�k). Instabilities in the mean flow
described above appear when the phase speed of the wave-like disturbance is complex,
with a nonzero imaginary component. The temporal growth of these instabilities is
exponential and is characterized by the exponent kci. Complex phase-speeds of the
perturbations are obtained as the complex eigenvalues of the eigenvalue problem system,
which is solved numerically using the shooting method.

The shooting algorithm for solving the eigenvalue problem consists of the following
steps: Since an explicit solution was found in region (b) (i.e. l � y � 0) numerical
integration of the differential equations is only required in region (a). The integrations start
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at the boundaries of region (a), z � � and z � 1, where the z-dependence of the
well-behaved solutions in this region is already known. At z � �, the integration is
initiated with the two independent vectors of solutions (one for each value of �), by

assigning the arbitrary amplitude, P2
˜ , the value of 1 in each of the two integrations (one

integration for each allowable value of �). The complete solution for � � z � 1 is a linear
combination of the two solutions found by these two numerical integrations. At z � 1, we
recall that the value of P1(1) is not determined while the value of P2(1) should equal (by
continuity) its corresponding value in region (b), which is an undetermined constant of
integration there. The general solution at z � 1, therefore, is a linear combination of
two independent solutions: The first has (P1 � 1; P2 � 0) and the second with (P1 � 0;
P2 � 1).

To find numerically the complete solution in the range 0 � z � 1, we begin by carrying
out two numerical integrations starting at z � 1, with the general solution at z � 1 as
described above and ending at z � 0.5. The values (P1( z � 0.5�), P2( z � 0.5�),
V1( z � 0.5�), V2( z � 0.5�)) that result from these two integrations are stored. Two
additional sets of numerical integrations are carried out from z � 0 to z � 0.5, starting
with the well-behaved solution near z � 0 as described above. The general solution in 0 �

z � 0.5 is also a linear combination of these two solutions and the values of (P1( z �
0.5�), P2( z � 0.5�), V1( z � 0.5�), V2( z � 0.5�)) that result from these two
additional integrations are also stored. Requiring that the solution for (P1( z), P2( z),
V1( z), V2( z)) be continuous at z � 0.5 provides the final condition that determines the
phase speed, c � cr � ici as follows.

For fixed values of the parameters of the problems (l, k, r), we calculate the determinant
of the four values of P1, P2, V1, V2 at z � 0.5, that results from the four integrations
described above. We then search for the complex value of c � cr � ici at which the
determinant vanishes. This value is the sought unstable phase speed and the corresponding
eigenfunctions are the nontrivial continuous solution of (P1, P2, V1, V2) in the entire 0 �

z � 1.0 interval. For the initial guess of (cr, ci), where the search for the eigenvalue
begins, we chose the values calculated in Barth (1989b) for (l � 2, r � 2, k � 1), from
which we searched for (cr, ci) by varying (l, k, r) in small increments.

b. Results

A large number of growth rate computations were carried out for the same Uo(H1)
profile by varying the values of the 3-model parameters: The depth-ratio r � H/H1, the
distance between the outcropping front and the wall l � L/Rd, and the perturbation’s zonal
wavenumber k.

The resulting dispersion curves �i(k) � k � ci(k) for several values of the depth ratio,
r, in the range r � 1.001 � r � 20 are shown in Figure 2. In the range of r between 1.5
and 20, the growth rate curves exhibit similar characteristics for all values of r: A single
local maximum growth rate, which defines the most unstable wave corresponding to
wavenumber kmax, followed by a decrease in growth rate and ending abruptly at a
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shortwave, kc. For wavenumbers smaller than kmax, �i decreases smoothly toward zero at
the infinite wavelength limit (i.e. k � 0). For r � 1 �� 1, on the other hand, not only do
the maximal growth rates increase significantly, but a second local maximum exists.

Note, however, that the application of the shooting method at small wavenumbers and at
depth ratios very close to 1 has increased uncertainty due to the singularity of the
differential equations in these two limits. Nevertheless, the general trend in the �-curve
indicates a convergence to zero as k tends to zero, as do the ci(k) curves in Figure 3b. For k
larger than the critical wavenumber, kc (which depends on r), the unstable mode ceases to

Figure 2. Growth rate �i � kci and corresponding e-folding times for l � 2, as a function of k for
different depth ratios r, including r � 1.011, and 1.001.
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exist and the cr(k) curve bifurcates into two real modes, as shown in the real phase speed
curves in Figure 3a. This shortwave cut-off and mode splitting at the bifurcation
wavenumber kc typifies most frontal instability curves (e.g. Killworth et al., 1984; Barth,
1989b; Paldor and Ghil, 1991, 1997) and indicates that the instability originates from the
coalescence of two real modes.

Our main interest is in the effect of the depth-ratio on the existence and development of
the linear instabilities, especially when it gets small. The growth rate and dispersion
relationship derived from this method for r � 2 are in very reasonable agreement with the
results of Barth (1989b), and only slight discrepancies exist—the wavenumber of maxi-

Figure 3. Real (cr) and imaginary (ci) phase speeds for 5 different depth ratios.
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mum growth rate, kmax, is slightly different (i.e. 1.05 vs 1.1) and the shortwave cutoff, kc,
is slightly higher in our calculations. The main effect of decreasing the depth ratio is to
significantly increase the growth rate, phase speed, and wavenumber of the fastest growing
wave kmax, i.e. reducing the wavelength of the most unstable wave. Values of the growth
rate range from 0.014 for r � 20 to 0.125 for r � 1.5 (which corresponds dimensionally to
an e-folding time of 8.2 days for r � 20, to 0.9 day for r � 1.5). The wavenumber of
maximal growth rate, kmax, ranges from 0.6 for r � 20 to 1.2 for r � 1.5. This behavior is
known to be related to the higher vertical shear of the mean flow over the entire water
column when the lower-layer thickness becomes shallower, which leads to instabilities
developing and propagating much faster at a shorter dominant wavelength.

In contrast to the earlier studies, we have also investigated the range of 1 � r � 2,
corresponding to relatively thin (and even nearly vanishing) lower layers. Instabilities in
this range of depth ratio cannot be studied in the QG approximation since the relative
change in the height of the lower layer cannot be assumed small even when the Rossby
number is sufficiently small. Near r � 1.01, there is a second local maximum at k � 1.05.
Other experiments for nearby values of r indicate that the change in the curve’s monotony
is sharpest for r � 1.01. This result is similar to other studies on linear instabilities (e.g.
Paldor and Ghil, 1991), and can be explained by the interaction of the unstable mode with a
third mode. The resonance of this mode occurs for 1.005 � r � 1.05. Note also in
Figure 3 how the real phase speed is affected for r � 1.01 with respect to cr(r � 1.05)
near k � 1.05.

In order to understand the relationship between the frequency and phase speed as a
function of r, we fitted simple functions to the results of Figures 2 and 3. In Figure 4a, we
show some of the results of Figures 2 and 3 but this time plotted on a logarithmic scale
versus ln(r) (note that the origin of the abscissa corresponds to r � 1). The following
fitting functions were found for �imax, kmax, kc and cr by finding the linear best-fit of the
logarithmic curves:

For 1.001 � r � 20:

�imax � 0.183r�0.87

kmax � 1.408r�0.317

(19)kc � 2.034r�0.357

cr � 0.162r�0.63.

These fitting functions provide an easy estimate for the four observable variables as
functions of r and highlight the importance of the lower layer thickness (relative to that of
the upper layer) in the dynamics of linear instabilities—the four variables all vanish when
the lower layer becomes infinitely thick (r 3 	). Note that although formally, all four
variables are singular (approach 	) when r approaches 0, this formal limit has no physical
meaning since, by definition, r � 1. A similar result was found by Oey (1988) using a
nonlinear, time-dependent, three-dimensional model. His configuration is similar to ours in
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Figure 4. (a) Fitting functions of �i (circle), kmax (cross), cr (triangle) and kc (star) versus ln(r).
(b) Fitting functions of �i, kmax and kc versus ln(r � 1), superimposed on the fitting functions of
Killworth et al. (1984) (dashed lines).
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that he has an outcropping front and vertical wall. However, his study deals with a
rectangular channel with periodic boundary conditions. Oey concludes that when the
distance of the wall from the front is larger than one radius of deformation (i.e. l � 1 in our
notation) the growth rate varies with r as r�n where n � 1. In comparison in the present
study, our results for the maximum growth rate, �imax have n � 0.87 in Oey’s notation.

This close analogy between our results, which obtain as solutions of a linear eigenvalue
problem, and the nonlinear, 3-dimensional, results of Oey (1988) is not unique. Similar
analogy was also encountered in previous works (e.g. Boss and Thompson, 1999) where
quantitative estimates (e.g. wavelength with maximal growth rate) derived from linear and
quasi-linear instability theories (which formally apply only to the initial stages of the
perturbations’ growth) turned out to provide reasonable estimates for the unstable waves’
characteristics (i.e. length scale) even at mature stages of growth (e.g. long time into the
development of meanders), when nonlinear effects become important and linear results are
not expected to be relevant.

The influence of the wall on the development of instabilities is illustrated in Figure 5,
where we plot the growth rate as a function of both l (�L/Rd) and k, and the results are

Figure 5. Growth rate as a function of the wavenumber k and distance from the wall l for a depth
ratio of r � 2.
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qualitatively similar to those of Barth (1989). For l � 2 (i.e. L � 2 Rd), ci is asymptotic to
a constant value (that depends on k), hence the “wall effect” is felt only within about 1
radius of deformation from the outcropping front. Note also at l � 0 the slower rate of
decrease in �i when k tends to kc. The proximity of the wall appears to have only a slightly
stabilizing effect on the unstable waves as even at l � 0, the growth rate decreases only to
more than one half of its asymptotic, large l, value. This behavior seems to be due to the
introduction of l in the hyperbolic cotangent expression 1/(kc coth (kl ) � 1) in the
boundary conditions of the lower layer at z � 1, as l does not appear anywhere else in the
governing equations. The primary dependence on this term becomes obvious when plotting
ci versus kl for different wavenumbers (i.e. Fig. 6): The cotangent function reaches its
asymptotic value for kl � 2 as do all ci curves. Therefore, the wall affects the resulting
instability curves only via its presence in the coth (kl ) term of the boundary condition of
the lower layer in region (a), which is negligible when the wall is located more than two
radii of deformation away from the surface front. Oey (1988) relates the decrease in growth

Figure 6. Imaginary phase speed ci normalized by its asymptotic value for large l, plotted as a
function of the quantity (k � l ).
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rate when L � Rd to the reduced effect of rotation, which results in more available
potential energy being converted to mean kinetic energy. Since the growth rate of
baroclinic instability depends on the available potential energy, via its conversion into
eddy kinetic energy (Cronin and Watts, 1996), less energy is available for conversion into
eddy kinetic energy, which is reflected in the decrease in the instabilities’ growth rate.

4. Discussion

a. Comparison with Barth (1989)

Our physical set-up (flat bottom, vertical wall, constant potential vorticity in the upper
layer and motionless lower layer) is the same as that studied in Barth (1989b), and for the
most part when the parameter values overlap the results of the two studies are very similar
(both quantitatively and qualitatively). However, the numerical methods employed in the
two studies are different: Barth solves the eigenvalue problem by discretizing in the entire
infinite y-range over a finite subinterval. This method suffers from two inaccuracies: The
first is that the behavior of the eigenfunctions at y � �	 (imposed here as the boundary
conditions at z � 0) cannot be handled accurately and is replaced by imposing vanishing
of the eigenfunctions at some large, but finite, y. The second is that the spatial resolution
associated with any finite difference analog of an eigenvalue differential equation limits the
accuracy since higher resolution in y (to increase the spatial resolution) comes at the
expense of an increase in the dimension of the matrix whose (algebraic) eigenvalues are to
be computed. The larger the matrix is, the more difficult it becomes to diagonalize the
matrix and calculate the particular complex eigenvalue that yields the instabilities’ growth
rate. In contrast, the method of solution employed in the present study consists of
integrating the differential equations with very high accuracy (the 5th order Runge-Kutta
integration scheme we used had a 10�13 accuracy) and calculating the determinant of a 4 �
4-matrix of the constants of linear combination of the four numerical integrations. A
determinant of dimension 4 only can be calculated very accurately, even when its elements
are complex, so the resulting value of c � cr � ici at which the determinant vanishes is
very accurate. The transformation of the independent coordinate y, which varies over the
infinite domain of [0, �	) into the z � ey, which varies over the [0, 1] domain, further
simplifies the integration of the differential equations and enables an accurate determina-
tion of the phase speed. The higher spatial resolution in our study may explain the slight
differences in kmax and kc between Barth’s numbers and ours: for a depth-ratio value of 2,
we find a maximum growth-rate of 0.099, which is 9% higher than Barth’s value.
Similarly, the difference for kmax and kc are of the order of 3–4%, while the real phase
speed values are identical. The difference between the values of �imax for r � 5 is reduced
to 4.3%, and it becomes insignificant for the higher depth ratios.

It seems, therefore, that the resulting discrepancies between the two methods are
negligible for large r � 1, but become important (mostly in �i and kmax) for r � 1 � 1.
One might assume that the differences in the growth rate and most unstable wavenumber
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keep increasing as r � 1 tends to zero, but the smallest depth ratio investigated by Barth is
r � 2.

b. Comparison with Killworth et al. (1984)

Killworth et al. (1984) studied the development of wavelike instabilities in a physical
set-up that is very close to ours (uniform vorticity in the upper layer, motionless lower
layer, outcropping interface) with the exception of the vertical wall. Instabilities occur in
their study when a slightly variable potential vorticity is added to the potential vorticity in
the upper layer. Their analytical results are derived for long waves and deep lower layers,
and these expressions are confirmed and then extended to finite wavelengths and moder-
ately deep lower layers, numerically. The main finding in their study is the fitting functions
for kmax, �imax and kc, which are expressed in the form of (r � 1)a, with a � 1. These
functions are comparable to the Phillips (1954) quasi-geostrophic model applied to a flow
unbounded in y (cf Table 1). It is clear from the results shown in Table 1 that in the limit
when the upper layer extends to the ocean’s bottom, r 3 1, this form of the fitting
functions leads to diverging �imax, kc and kmax. This is in contrast to our results which are
asymptotic to a finite value at r � 1 and the growth rate does not increase as dramatically
when r 3 1. Although their results of �imax � 0.13(r � 1)�3/4 are in reasonable
agreement with ours for r � 2, our results (cf Fig. 4b) are fundamentally different for
1.001 � r � 2. Our accurate method of solution enabled us to cover a wider set of small
depth ratios by including the cases of relatively thin to vanishing lower layers, which
allowed us to investigate the solution of the system in a parameter range not considered in
previous studies. This led to new fitting functions for the maximal growth rates and
wavenumbers.

We looked at the results of Killworth et al. (1984) and ours for l � 2. However, most
variables are close enough to their asymptotic values to validate the comparison. The
significant difference in the behavior of the fitting curves in the depth-ratio range 1 � r �

2 compared to that in r � 2 raises a doubt on the applicability of QG models when the
lower (motionless) layer is thinner than the upper layer (where the mean flow occurs).

c. Comparison with Gulf Stream’s observations

The 2-layer, shallow-water, configuration of the present study has been frequently
employed to study the dynamics of major ocean currents such as the Gulf Stream, where
the velocity is negligible below the main thermocline. In the mean, the Gulf Stream can be

Table 1. Analytical solutions and fitting functions of r for �imax, kmax and kc.

Ref. �imax kmax kc

This study (1.001 � r � 20) 0.183r�0.87 1.408r�0.317 2.034r�0.357

KPS (1984) (2 � r � 20) 0.13(r � 1)�0.75 1.15(r � 1)�0.25 1.6(r � 1)�0.25

Phillips (1954) 0.88(r � 1)�3/4 (4/3)1/4(r � 1)�1/4 21/2(r � 1)�1/4
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accurately approximated by a geostrophic surface front of constant potential vorticity with
a path nearly parallel to the continental slope, represented here by the vertical wall. The
distance between the Stream (i.e. its North Wall) and the continental slope varies between
1–3 Rd south of Cape Hatteras and about 10 Rd s downstream of the New England
Seamount Chain. In the latter region, the radius of deformation is roughly from 30 to
50 km. By dimensionalizing the results accordingly and taking a typical depth ratio of r �
5 (corresponding to a total depth of 500 meters and a main thermocline depth of 1000
meters), we find that the fastest growing meanders have a period of 18 days, and an
e-folding time of 2.5 days. The wavelength ranges from 260–360 km depending on the
value chosen for the radius of deformation so the propagation phase speed ranges from 14
to 22 km day�1. The dimensional values of the most unstable waves for different depth
ratios are shown in Table 1 (wavelength and phase speed values were calculated for a
deformation radius of 40 km). These unstable waves seem to fall in the category of fast
growing meanders of 200–400 km with relatively small periods and short e-folding times
of the order of 1 to 5 days, which are characteristics of baroclinic and mixed barotropic-
baroclinic instabilities, generated by the vertical shear of the horizontal velocity.

The most relevant observations for the Gulf Stream’s typical depth-ratio range (2 � r �

5), are from Kontoyiannis and Watts (1994), and Tracey and Watts (1986) who used arrays
of inverted echo sounders to monitor the path of the Stream. In both studies, similar values
to within a factor of 2 were found downstream of Cape Hatteras. Their measured period
was below 8 days and the e-folding times are 3–4 days, which are close to our calculated
values for the most unstable waves for r in this range of 2 to 5. Other observations reported
by Watts and Johns (1982) have also identified meanders of rapid growth (e-folding time
�6 days), but with wavelengths of 400 km and above, which fit the unstable mode of the
present study but for a depth ratio of 10.

South of Cape Hatteras, the Gulf Stream flows in the mean along the upper continental
slope and shelf-break. Depending on its lateral oscillations, its signature either extends all
the way to the bottom, or is intersected by the presence of the Deep Western Boundary
Current, where the velocity is not negligible. Thus, the idealized configuration used in this
study is not applicable to the Gulf Stream’s meandering activity upstream of Cape
Hatteras.

One has to keep in mind the simplicity of this idealized configuration, where part of the
continental slope is approximated as a vertical wall, whereas the offshore part is considered
as a flat bottom. While the wall’s influence on the stability of the front becomes
insignificant beyond a distance of 1–2 Rd, the existence of a bottom slope was shown to
have a significant effect on the growth rate (Barth, 1989; Johns, 1988), both by reducing its
maximal value dramatically and shifting the most unstable waves to longer wavelengths.
Johns (1988) showed that for bottom slopes of the order of the continental slope in the
North Atlantic Bight, increasing the bottom slope by a factor of 4 causes a decrease in the
instabilities’ growth-rate (in the long-wave range) by a factor of 3. Similarly, Barth
(1989b) showed that a bottom slope of 0.5 � H1/Rd decreases the growth rate by a factor
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of 6–7. The upper continental slope can be approximated by a linearly sloping bottom with
a slope of about 10�2. Hence, for a deformation radius of 40 km and upper layer thickness
of 500–1000 meters, the trend in the curve found by Barth would lead to a reduction in the
growth rate of about 60% compared to the flat bottom case, accompanied by a two-fold
increase in e-folding time. The emerging scenario from all these works, is that the
bottom-slope cannot be neglected when the Gulf Stream’s path is close to the continental
slope, which is the case south of, and in the vicinity of, Cape Hatteras.

In the not-so-typical typical range of r � 2, the results of the present study can possibly
be applied to observed meanders of the Gulf Stream between 75 and 70W. Our estimates of
the observable parameters given in Table 2 do not agree with most observations, but
Kontoyiannis and Watts (1994) report on observed meanders with wavelengths and phase
speeds of 180–212 km and 41–51 km/day, respectively, that agree with the predicted
dispersion relationships for radii of deformation ranging between 35 and 45 km (cf Fig. 7).
Similarly, Tracey and Watts (1986) find meanders with wavelengths and phase speeds of
120–230 km and 45–46 km/day, respectively, near Cape Hatteras that fit to predicted
unstable waves of our theory for depth-ratios ranging between 1 and 2. There is, however, a
slight discrepancy between the predicted and calculated growth rates: the e-folding time

Table 2. e-folding time, wavelength, phase speed and period of the most unstable wave calculated
for a radius of deformation of 40 km, and meander characteristics from Gulf Stream’s observa-
tions.

Depth ratio r � H/H1
e-folding time

(days)

Dominant
wavelength �

(km)
Phase speed cr

(km · day�1)
Period T
(days)

10 4.3 370 14 27
5 2.5 300 20 16
2 1.2 230 35 8
1.5 0.9 203 43 4.7
1.05 0.6 175 55 3

Observations

Brooks and Bane (1981) — 100–200 30–40 3, 7–8
Watts & Johns (1982) 4.5–6 �400 20–30 �14

5.5–7.5 �184 �40 �4.5
Tracey & Watts (1986) 7–8 180–230 45–46 4–5
Kontoyiannis & Watts (1994) 2–4 230–260 31–35 6.5–8.5

3.5–6 212 41 5.2
5.5–12 195 46 4
3.5–10 180 51 3.6

Lee & Cornillon (1996) — 320 13.3 20–30
— 270 20.2 10–20
— 223 27.0 7–10
— 197 38.8 4–7

658 [62, 5Journal of Marine Research



for 1 � r � 2 is of the order of 0.5 to 1 day, while those reported by Kontoyiannis and
Watts (1994) are of the order of 3.5–12 days, and those reported by Tracey and Watts
(1986) are 7–8 days. Yet, these observed values remain in a comparable range, especially
when taking into account the difficulty in measuring meander growth rates in the real
ocean, and the fact that linear instability theories predict only the early stages of meander
development: the measured e-folding time of ocean meanders corresponds to a much later
stage of development, when its value is expected to change in time. However, the
wavelength and phase speed remain fairly close to our theoretical estimates. Another
application of our results is in the observations of Lee and Cornillon (1996) who measured
Gulf Stream meanders with a 197 km-wavelength and a phase speed of 39 km/day between
74 and 70W. These observed values agree with meander characteristics predicted by our
theory for a depth ratio of 1.5. Observations regarding the meanders’ growth rate are not
reported in their observations. The reason for such similarities in the low depth-ratio range
1 � r � 2 may be due to the proximity of the Gulf Stream to the continental Shelf and
Slope in the vicinity of Cape Hatteras, where lateral oscillations of the jet may push its path
more inshore, resulting in a relatively shallower subthermocline layer, which in turn, could

Figure 7. Predicted phase-speed as a function of the wavelength for different radii of deformation,
superposed to observations of the Gulf Stream near Cape Hatteras, and between 74 and 70W.
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trigger the types of instabilities investigated here. In this connection we note that the
inclusion of both a sloping bottom and bottom friction will probably yield slower growth
rates but the effect of a sloping bottom is to increase the wavelength. Despite these
shortcomings of the present theory, there is little doubt that observations in this region are
typified by r � 2, which is studied in the present work for the first time.

5. Summary

We have studied, semi-analytically, the linear instability of a geostrophic surface front
with constant potential vorticity near a wall in a 2-layer shallow water model on an f-plane.
The dispersion relations we obtained are qualitatively similar to the results of Barth
(1989b), yet more accurate for the same depth ratio, and to the results of Killworth et al.
(1984) when neglecting the influence of the vertical boundary located more than 2 radii of
deformation away from the front. We have extended their numerical instability calcula-
tions to a wider depth ratio range by including the 1.001 � r � 20 subrange. Calculations
of the growth rates for r in the vicinity of 1� resulted in more precise general fitting
functions for several observed parameters as a function of r. These new calculations have
also identified a secondary maxima in the growth-rate curves that originates from localized
(in wavenumber) resonances between different real modes.

For instance, the general behavior of cr and ci is affected by the emergence of another
instability source due to the resonance of another mode for 1.005 � r � 1.05, and a
secondary lobe (for �i(k)) arises for k � 1.05.

Most importantly: the growth rates in our calculations are not singular in the r � 1 limit,
as is the case in quasi-geostrophic analytical solutions for the no wall case (Killworth et al.,
1984). Consequently, we found for �i, cr, kmax and kc linear-log dependence in r instead
of r � 1. Such a difference in the depth ratio range [1, 2] is probably due to the fact that the
QG approximation is no longer valid for very thin lower layers. These newly found fitting
functions are very close to those suggested by Killworth et al. (1984) for r � 2.

The limited influence of the wall located at a distance L from the front was explained by
deriving an analytical expression for the solution near the wall. These exact solutions
provide the boundary conditions at the front for the solutions in the lower layer at the
seaward side of the front, so the dependence of the growth rates on L appears only in the
weak dependence of the boundary terms (coth (kl ) � 1)�1 (for l � L/Rd), which varies
from 0.43 at kl � 1 to 0.5 at kl � 	.

Applications of our results to observations in the Gulf Stream downstream of Cape
Hatteras (internal radius of deformation of 40 km, depth ratios ranging from 2 to 10) yield
very reasonable agreement with the short wavelength/rapidly growing meanders observed
by Watts and Johns (1982), Tracey and Watts (1986), and Kontoyiannis and Watts (1994),
which were previously identified in the literature as resulting from predominantly ba-
roclinic instabilities. Comparatively, the fastest growing meanders predicted by this study
range in wavelengths, periods, and e-folding times respectively, between about (200 km, 8
days, 1.5 days), to about (400 km, 30 days, 4.5 days).
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In the vicinity of Cape Hatteras where the proximity of the continental shelf leads to a
relatively shallower lower layer of the Gulf Stream, our small r results are applicable. The
observed wavelengths and phase speeds of 180–212 km and 39–51 km/day, respectively,
from Kontoyiannis and Watts (1994), Tracey and Watts (1986) and Lee and Cornillon
(1996) agree with our calculated dispersion relationships in the 1� � r � 2 range for radii
of deformation of 35–45 km. Our calculated growth-rate (i.e. e-folding time of the
meanders) is slightly larger than the observed one, but this parameter is very difficult to
estimate directly from observations in a fast moving current.
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