12,310 research outputs found

    Study of solid state photomultiplier

    Get PDF
    Available solid state photomultiplier (SSPM) detectors were tested under low-background, low temperature conditions to determine the conditions producing optimal sensitivity in a space-based astronomy system such as a liquid cooled helium telescope in orbit. Detector temperatures varied between 6 and 9 K, with background flux ranging from 10 to the 13th power to less than 10 to the 6th power photons/square cm-s. Measured parameters included quantum efficiency, noise, dark current, and spectral response. Experimental data were reduced, analyzed, and combined with existing data to build the SSPM data base included herein. The results were compared to analytical models of SSPM performance where appropriate models existed. Analytical models presented here were developed to be as consistent with the data base as practicable. Significant differences between the theory and data are described. Some models were developed or updated as a result of this study

    Solid state photomultiplier for astronomy, phase 2

    Get PDF
    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations

    The solid state photomultiplier: Status of photon counting beyond the near-infrared

    Get PDF
    Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed

    Study of the technique of stellar occultation

    Get PDF
    The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study

    Integrated digital/electric aircraft concepts study

    Get PDF
    The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost

    Direct microwave measurement of Andreev-bound-state dynamics in a proximitized semiconducting nanowire

    Full text link
    The modern understanding of the Josephson effect in mesosopic devices derives from the physics of Andreev bound states, fermionic modes that are localized in a superconducting weak link. Recently, Josephson junctions constructed using semiconducting nanowires have led to the realization of superconducting qubits with gate-tunable Josephson energies. We have used a microwave circuit QED architecture to detect Andreev bound states in such a gate-tunable junction based on an aluminum-proximitized InAs nanowire. We demonstrate coherent manipulation of these bound states, and track the bound-state fermion parity in real time. Individual parity-switching events due to non-equilibrium quasiparticles are observed with a characteristic timescale Tparity=160±10 μsT_\mathrm{parity} = 160\pm 10~\mathrm{\mu s}. The TparityT_\mathrm{parity} of a topological nanowire junction sets a lower bound on the bandwidth required for control of Majorana bound states

    The rural pharmacy practice landscape: challenges and motivators

    Get PDF
    Background: Health outcome delivery for rural and remote Australian communities is challenged by the maldistribution of the pharmacy workforce. High staff turnover rates, reduced pharmacist numbers, and reliance on temporary staff have placed great strain on both state health services and rural community pharmacies. However, recent changes to the demographic profile of the rural pharmacist including a lower average age and increased time spent in rural practice highlights a more positive future for the delivery of better health outcomes for rural communities. The aim of this study was to investigate the factors that motivate and challenge pharmacists' choice to practice rurally. Methods: Rural pharmacists were invited to participate in semi-structured interviews using purposive non-probability sampling. Twelve pharmacists were interviewed with early-, middle- and late-career pharmacists represented. Participants described their experiences of working and living in rural and remote locations. Three themes emerged: workforce, practice environment and social factors, which were examined to determine the underlying challenges and motivators impacting rural and remote pharmacy practice. Results: Lack of staff presented a workforce challenge, while motivators included potential for expanded scope of practice and working as part of a multidisciplinary team. While social isolation has often been presented as a challenge, an emerging theme highlighted that this may no longer be true, and that notions of "rural and remote communities as socially isolated was a stigma that needed to be stopped". Conclusion: This study highlights that despite the challenges rural pharmacists face, there is a shift happening that could deliver better health outcomes for isolated communities. However, for this to gain momentum, it is important to examine both the challenges and motivators of rural pharmacy practice to provide a platform for the development and implementation of appropriate frameworks and programs to better support the rural pharmacy workforce

    Clusters in weighted macroeconomic networks : the EU case. Introducing the overlapping index of GDP/capita fluctuation correlations

    Full text link
    GDP/capita correlations are investigated in various time windows (TW), for the time interval 1990-2005. The target group of countries is the set of 25 EU members, 15 till 2004 plus the 10 countries which joined EU later on. The TW-means of the statistical correlation coefficients are taken as the weights (links) of a fully connected network having the countries as nodes. Thereafter we define and introduce the overlapping index of weighted network nodes. A cluster structure of EU countries is derived from the statistically relevant eigenvalues and eigenvectors of the adjacency matrix. This may be considered to yield some information about the structure, stability and evolution of the EU country clusters in a macroeconomic sense.Comment: 6 pages, 8 figures, 1 table, 17 references, submitted to Physica A; proceedings of APFA
    • …
    corecore