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1.0 SUMMARY

Available SSPM detectors were tested under low-background, low
temperature conditions to determine the conditions producing
optimal sensitivity in a space-based astronomy system such as a
ligquid-helium-cooled telescope in orbit. Detector temperatures
varied between 6 and 9 K, with background flux ranging from 1013
to <106 photons/cmz—s. Measured parameters included guantum
efficiency, noise, dark current and spectral response.

Experimental data were reduced, analyzed and combined with
existing data to build the SSPM data base included herein. The
results were compared to analytical models of SSPM performance
where appropriate models existed.

Analytical models presented herein were developed to be as
consistent with the data base as practicable. Significant
differences between the theory and data are described. Some
models were developed or updated as a result of this study.



2.0 INTRODUCTION

The Rockwell Solid State Photomultiplier (SSPM)ElJ is an
impurity-band avalanche device which can count individual
photons with wavelengths between 0.4 and 28 gm.Ez] The response
of the SSPM to a photon is a pulse of between 104 anad 105
conduction electrons, making it an important device for use in
low-background, near- to mid-IR detection applications. The
SSPM is, however, a new device which must be better understood
before it is incorporated into an overall system design.

Results of experimental and theoretical work undertaken to
better understand and characterize the SSPM for use in astronomy
applications are described in this report. Sections 3.0 through
8.0 emphasize results of measurements performed on existing
detectors, and presents some egquations which can be used to
describe the results. Sections 9.0 through 9.4 discuss a model
of the SSPM avalanche, and compare some of its implications with
an experimentally measured pulse height distribution.

Fig. 1 shows the expverimental setup used to measure SSPM
characteristics, and Fig. 2 displays typical electronics used in
making the measurements.
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3.0 DARK CURRENT

The dark current (steady-state bias current) varied
approximately exponentially with both bias voltage and
reciprocal temperature under "zilch" illumination (<108

photons/cmz—s). The data snown were taken using an array
containing nine 4 x 10 mii? pixels. Data were alsoc taken on a 6
x 6 mil2 discrete detector from the same wafer. The results are

shown in Tables I and II, and data from the discrete detector is
plotted in Figs. 3 and 4. 3ias current is given by

where Agss is effective detector area and C;, C, and Cj3 are
constants which depend on the doping levels and profiles used in
a particular device. The departure from exponential dependence
at lower bias values is due to changes in the electric field
profile in the infrared-active region of the detector caused by
the doping profile and field-assisted thermal ionization (Poole-
Frenkel effect).

It is important to note that, due to the structure of the
detector, the carriers responsible for the steady-state bias
current were not subject to the full SSPM gain. As a result,
the dark current had very low noise, and SSPM pulses due to
detected pnotons or occasional dark coun:ts stood out well above
the dark current noise.

At 6.0 K and beiow, little or no SSPM action was observed;
however, at the time of this writing, devices which exhibited
SSPM action at lower temperatures were undergoing preliminary
testing on another program.
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voltage on 4 x 10 mil? detectors.
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Table II. Bias current as a function of temperature and bias
voltage on a 6 x 6 mil? detector.

Temperature(K)

Vpias(V) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
4.0 125  .337 751 1.553 2.44 4.04 6.00 8.38
4.5 260 667 1.425 2.85 4.41 7.14 10.49 14.95
5.0 495 1.195  2.42 4.71 7.19 11.65 17.85 26.1
5.5 890 2.01 3.90 7.32 11.25 18.80 28.9  42.3
6.0 1.54 3.24 5.99 11.21 17.63 29.0 44.4 64.5
6.5 2.63 5.10 9.17 17.29 26.9 43.1 65.3 93.8
7.0 4.38 8.11 14.45 26.4 40.1 62.4 93.4 133.3

Current values are in 109 A
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4.0 QUANTUM EFFICIENCY AND SPECTRAL RESPONSE

The guantum efficiency and spectral response of SSPMs were
measured using front illumination. Fig. 5 shows the counting
quantum efficiency of a front-iliuminated SSPM in both the
infrared and visible regions as a function of wavelengtnh.

Edge-illumination increases the optical path length for photon
wavelengths with long attenuation lengths (i.e., wavelengths
less than 5 um), thereby increasing the probability that a
photon will be absorbed and improving the guantum efficiency.
Fig. 6 shows an example of an experimental geometry used to
compare front and edge illumination. Fig. 7 shows the ratio of
quantum efficiencies for front- and edge-illuminated SSPMs as a
function of incident wavelength. The incident flux density
during these measurements was on the order of 108 photons/cmz—s.
The ratio of quantum efficiencies was calculated using:

Ry = nedge/"front = (Afront/Aedge)fedge/ffront

where the areas A are effective detector surface areas and the
count rates f are given by:

f = fijluminated - fdark

Assuming that photogenerated electrons in the infrared-active
region do not recombine with positive charges pefore reaching
the gain region, the quantum efficiency and attenuation length
are related by:

n = (1-R)[1-exp(-x/a)],

where 7 is quantum efficiency, R is reflectivity at the detector
surface, x is the optical path length and a is the attenuation
length for a given wavelength. Therefore, for a >> X,

nedge/Nfront = Xedge’/Xfront:

For space-based astronomy using wavelengths in the 1 to § um
range, edge-illumination should be considered if a discrete
device or a line array of detectors is desired, or if the
resuitant improvement in quantum efficiency justifies the
additional effort associated with building an edge-illuminated
area array.

12
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5.0 ARRAY UNIFORMITY

L R—

The uniformity of a 6 x 6 array of Getectors was measured at T =
7 K, Vpjag = 8.3 V, 2 = .565 gm. The array is shown in Fig. §.
The test dewar had three leads which were not connected to the
test package, so that only 33 of the 36 elements were tested.
The pixel area was 6 X 6 mils2, and each pixel was separated
from its neighbor by 2 mils. The array contained one anomalous
pixel (probably caused by a small defect in the silicon crystal
structure) whose gquantum efficiency was less than 27%. Results
from the remaining pixels are given in Table III.

The quantum efficiencies were calculated from gathered data
using:

7 = (filluminated ~ fdark)/(®Apjixel)

where ¢ = 2 x 107 photons/cm2-s. This array was obtained from
the most recent lot of SSPMs, and its properties and operating
parameters have not yet been fully characterized. For example,
higher quantum efficiencies than those reported in Table III are
currently being obtained under other conditions.

16



Table III. Quantum efficiency of pixels in a 6 x 6 SSPM arrav.
The array is shown in Fig. 8. Each pixel was 6 x 6 mils?, and
was separated from its neighbors by 2 mils. Measurements were
taken using Vpijas = 8.3 V, T = 7 K, 0 = 2 x 107 photons/cm2-s,
A = .565 um.

Pixel n(%) Pixel n(%) Pixel n(%)
1 46.1 12 45.6 23 46.2
2 48 .3 13 46.1 24 47.1
3 46.7 14 46.9 25 45.1
4 44.4 15 44.6 26 47.6
5 45.6 16 45.6 27 46 .7
6 45.8 17 43.1 28 44.17
7 42.8 18 46.1 29 44 .7
8 45.9 19 46.2 30 43.3
9 45.8 20 47.2 31 45.3

10 47.2 21 46.1 32 44.1
11 46.7 22 46.0

Average n = 45.7 t 1.3% over 32 pixels

17



Figure 8.

6 x 6 SSPM Array
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6.0 DARK COUNTS AND SATURATION

The dark count rate of an SSPM varied approximately
exponentially with temperature for temperatures up to about 9 XK.
Saturation occurs because time is required to sweep D7 charges
out of the detector's infrared active layer following production
of a photon pulse and re-establish the electric field profile
required for proper SSPM action. The disturbance in the
electric field caused by the DY charges creates a circular dead
zone at the surface of the (front-illuminated) detector, within
which subsegquent incident infrared photons will produce pulses
of diminished amplitude until the electric field profile is re-
established. The required dead time diminished with increased
temperature, but had a somewhat weaker dependence than the dark
count rate, so that the detector's dynamic range depended on
temperature. At temperatures near 10 K, the dark count rate
approached the saturation count rate, so that the dynamic range
of the device diminished. This is illustrated by the graph
shown in Fig. 9.

19



Count
Rate
Density

(s'em?)

Figure 9.

1010

10°

10°

107

10°

10°

Saturation
Count

Temperature (K)

i
Ap = .01 x .01 cm?
i V=72V
6 7 8 9 10

Temperature dependence of the SSPM dark
count rate and saturation count rate densities.

20



7.0 NOISE

Measurements showed typical 1/f noise, due to amplifier noise
and small fluctuations in the bias current. This noise could be
eliminated by counting photon pulses above a set threshold
(e.g., by triggering a one-shot with the SSPM photon pulses).
Fig. 10 shows the frequency response, in both direct and one-
shot modes, of an SSPM which was exposed to infrared pulses at a
rate of about 150 Hz. The 1/f noise evident In direct mode was
drastically reduced in one-shot mode.

SSPM dark pulses were uncorrelated in time. Therefore, in one-

shot mode, the noise associated with the device was pure shot
noise associated with the average dark pulse rate.

21
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8.0 SUGGESTED OPERATING CONDITIONS

In order to maximize the SSPM's dynamic range, the device should
be operated at the low end of the usable temperature range. For
the devices characterized in this study, the recommended
operating temperature is 7 K. To maximize gquantum efficiency at
this temperature, the highest bias voltage that can be applied
without a significant risk of overloading the device is 7.0 V.

Since these detectors function as high-impedance devices that
emit sharp current pulses, their outputs should first be
processed through a transimpedance preampliifier. Care should be
taken to keep stray capacitance between the SSPM and the
preamplifier below a few tens of picofarads in order to avoid
attenuating the SSPM pulse amplitudes.

23




9.0 PHENOMENOLOGICAL MODEL OF SSPM AVALANCHE GAIN STATISTICS

9.1 Background

The Rockwell Solid State Photomultiplier (sspM)(1l] is an
impurity-band avalanche device which can count individual
photons with wavelengths between 0.4 and 28 #m.[2] The response
of the SSPM to a photon is a pulse of between 104 and 105
conduction electrons. The photon initiates an avalanche of
electrons through the photoionization of a single impurity, one
of many found in a region of high impurity concentration in the
device. The released electron is subsequently accelerated by an
external electrical field until it ionizes another neutral
impurity atom. The resulting pair of electrons are in turn
accelerated until they impact~ionize other neutral impurities,
and in this way an avalanche of conducting electrons develops in
the region of high impurity concentration. In this report, a new
phenomenological model of the avalanche process in the SSPM is
discussed. The model reproduces, with a few physical and
empirical assumptions, the important and peculiar features of
the distribution h(n) of the number (n) of electrons in a pulse.
The pulse distribution h represents the fluctuations in the
population of the pulses, and therefore contains valuable
information about both the performance of the SSPM and the
underlying mechanisms crucial to that performance.

The observed h(n), shown in Fig. 11, is remarkable in several
respects. First, the gain <n>, where

<n> is estimated by Inh(n),
n=1

(h(n) is normalized throughout this work), is enormous, ranging
from 10,000 to 50,000 for the devices produced so far. The
mechanisms directly responsible for such large gains are not
well understood and will be addressed only indirectly in this
work. Instead, this report speaks directly to a second
outstanding feature of h(n), namely, its narrow peak near the
gain, and the resulting small gain dispersion ¢ ¢ <n>/2,

where ¢2 is estimated by ) (n-<n>)2h(n).
n=1

24
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In order to appreciate the peculiarity of the shape of h(n), the
observed h(n) is shown in the next section (9.2), to be
incompatible with the traditional descriptions of the avalanche
process as appiied to other devices, e.g., avalanche
photodiodes. This incompatibility motivates the subseguent
development in section 9.3 of a new phenomenoiogical description
of the avalanche process developed along the lines of classical
mathematical theory of branching, and the results are explained
in section 9.4. Finally, in section 8.5, the implications of
the new model for the future modeling and design of the SSPM are
discussed.

9.2 Conventional (Markov) Description of the Avalanche Process

In the usual treatments of, e.g., avalanche photodiodes, h(n) is
calculated from a phenomenological rate a, i.e., the number of
electrons generated per unit distance. [3] Usually (and
apparently exclusively) a is described as varying only with the
position t of a carrier, usually in one dimension, along a line
antiparallel to the field. Since a(t) is independent of the
history of a carrier, this description requires that the
avaianche develop as a Markov process. If in addition the
carriers do not interact with each other {and they do not in
traditional treatments), the avalanche may be described by the
classical theory of branching.[4][5] In particular, the theory
yields p(n,t;m), i.e., the probability that at t there are n
carriers given m carriers at the origin. In what follows,
position is written in reduced units so that the end of the
avalanche region is at t=1, and its origin is t=0. For a photon
counting device, h(n) = p(n,1;1).

The calculation of p(n,t;m) for a Markov branching process in
one dimension follows immediately, with only the following
additional assumptions. First, only one tvpe of carrier is
considered here, since in the SSPM only one tyvbe of carrier is
effectively mobile during the lifetime of one avalanche; for
other devices,where the mobile carriers are, respectively,
electrons and holes, two-type branching processes are easily
discussed.[3] Ssecond, the carriers do not recombine or

otherwise disappear. Third, upon impact-ionization of a neutral
impurity, the original carrier "dies" and simultaneously exactly
two carriers are "born". Then, for any continuous «(t), p must

satisfy the following differential egquations| 41[5]

26



-na(t)p{(n,t;m) + (n-1l)a(t)p(n-1,t;m), {(9.2.1)

dp(n,t;m)
dat

dp(m,t;m)
dt

-ma(t)p(m,t;m),

with the initial conditions p{(m,0;m) = 1, p(n,0;m) = 0, and
n>mz1. The solution is

p(n,t:m) = (BZf) (qe-1)"™(1-1/q¢)®, where gt = expfds a(s).

The gain, as a function of position, is <n(t)> = mg¢+. For both
large n and mn, p(n,1:m,0) is a unimodal function with its peak
near the mean, and indeed, avalanche photodiodes frequently
display such a distribution of pulse populations. However, this
behavior depends upon the fact that avalanche photodiodes do not
continuously count single photons, but instead respond to pulses
of photons (m =2200). In the photon counting mode, m must be
unity, and the resulting distribution would be

h(n) = p(n,1:;1) = (1-1/q¢)/(qe-1), (9.2.2)

a monotonically decaying function with <n> = g¢, far from the
peak at n = 1. Nevertheless, Fig. 11 shows that the observed
h(n) is a unimodal function with its peak near the mean.

Before rejecting the Markov branching hypothesis, it should be
noted that there is a type of Markov branching process which
(for m = 1) may produce a unimodal function decreasing on both
sides, namely, the multiple-stage process.[43[5] Such a process
could apply to the venerable photomultiplier tube, [7] where the
multiplication occurs in discrete stages. Although peaked pulse
height distributions usually are not observed for photo-
multiplier tubes, [71] Capasso[3] has apparently constructed a
solid-state analogue to the multiple-stage photomultiplier tube
which displays such a peaked h(n). The number distribution is
apparently well described bv the multiple-stage Markov process
for his device. However, such considerations are inapplicable
to the Rockwell SSPM, since it does not possess a multiple-stage
structure. Therefore, a model compatible with the observed h(n)
must reject either the neglect of carrier-carrier interactions,
the Markov hypothesis, or both.

27



The effect of carrier-carrier interactions could be to cut off
n

the avalanche as a critical number of carriers is exceeded I
each pulse. This could happen if a large number of carriers are
so concentrated (in space) in the avalanche that the corres-
ponding dense configuration of ionized impurities screens the
electric field, thereby reducing the acceleration of the
carriers and hence the probability of further impact ionization
of neutral impurities. A sharply peaked h(n) could result from
this proposed screening. In the context of Markov processes,
this would require that « depends both on t and n(t), the
instantaneous number of carriers at t. Although still
Markovian, the avalanche could no longer be described by a
classical branching process. However, if the interactions are
not too strong or rapidly varying, such a process could be
simulated by way of the Boltzmann transport equation.[3] This
screening scenario requires the production of both large gains
and dense (in space) pulses of carriers in the SSPM; apparently
the pulses must approach near-plasma densities to induce
screening. While this scenario is plausible for devices where
the gain is at least as large as 50,000, for similar devices
with lower gains, e.g., 15,000 (shown in Fig. 11), this
mechanism should not be expected to operate alone, if at all.
On the other hand, if carrier-carrier interactions may be
neglected, i.e., a is independent of n, then the Markov
assumption must be certainly rejected. The focus in the next
section is on the development of a non-Markov (history-
dependent) model of the avalanche for non-interacting carriers.
Table IV summarizes the dependency of « for the variety of
hypotheses just mentioned.

9.3 A Non-Markov Phenomenological Model of the Avalanche

By rejecting the Markov assumption, the branching rate a must
depend on the history of a carrier as well as, if at all, upon
its position. The importance of the history of an avalanching
carrier in the SSPM is indicated by the following consideration
of impact ionization. First, impact ionization of neutral
impurities occurs only when the colliding carrier attains or
surpasses a critical energy. Contrary to the Markov assumption,
the carrier does not attain the critical energy instantaneocusiy,
but must be accelerated by the applied field over a critical
distance x. from its origin. In fact, in what follows, all
carriers created bv impact ionization will be assumed to
initially possess zero energy, so that all the energy gain is
due to the field alone.

28



Table IV. Dependency of a upon position t, distance x,
and number of carriers n for six hypotheses.

————— S S ——— i —— s St — oy S S D DY e Sm S S S s S i M TS s S T T S S Sv e e e s S TE SR SN S M S S it e e e e dar mme e
1T 1 1 T T T 1ttt 1t 111ttt 2ttt 3 b a3

HF IF IF+CC
Markov a a(t) a(n,t)
Non-Markov a(x) al(t,x) a{n,t,x)

e I Y T T T T F ey ¥+ ¢+
FX -+ - - 133+ ¢+ 1+ 3+ -+ttt ittt 3+ 2 P 3

HF: Homogeneous Field
IF: Inhomogeneous Field
IF+CC: Inhomogeneous Field with Interacting Carriers
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Further, the scattering of sub-critical carriers by phonons ana
neutral impurities, respectively, will induce a distribution of
critical distances which a carrier must traverse from its origin
to attain the critical energy for impact ionization. Finaliliv,
after reaching the critical energy, the carrier must traverse
another distance before colliding with a neutral impurity. Since
the impurities are randomly dispersed in the avalanche region,
an additional distribution of critical distances is introduced.
Let p(X) represent the cumulative probability that a neutral
impurity is found on the line X beginning at the origin. Then,
writing the normalized distance distribution £ = £(x,t) to
indicate its dependence on both the position t of the carrier
and the distance x traveled from its origin, the non-Markovian
branching rate a(t,x) is the convolution. 9]

a(t,x) = r/8dy £(y,t)e(x-y), (9.3.1)
where r is an effective constant branching rate. The impurity
distributionl[10] is found immediately to be p(x) = 1-exp(-cx},
where ¢ = yny and np is the concentration of impurities and r is

the effective cross-section. Since both position and distance
are dimensionless in this work, x is scaled by the distance of
the avalanche region, which for the SSPM is taken to be 4x10-4
ecm. Typical values™ for the SSPM are ny = 5x1017 cm~3 and y =
1.6x10-13 cm2, so that for the reduced distances (0 < x, t s 1),
c = 32. The Markov branching rate a(t) is recovered only when £
factorizes as f{x,t) = ¢0(t)é(x), where § is the Dirac delta
function, and also as ¢ -~ «. It remains to develop a model for
f(x,t) and the branching equations for p(n,t;1).

It is convenient to develop f for the case of a homogenous
electric field, although the field in the SSPM is more nearly
linear. For the homogeneous field, f is independent of
position. The probability that a carrier first attains the
critical energy is zero before the minimum critical distance x..
This distance is determined solely by the field, and represents
the critical distance required in the absence of scattering.
Thus f(x) factors as H(x-X.)g(x-X.)., where g(y<0) = 0, and H(x)
is the unit step function centered at the origin. The
normalized function g therefore represents the effect of
scattering, which slows down the carriers and so randomly
increases the critical distance.

*The cross section (c.g.s.) is approximated by
For arsenic-doped silicon, Epip = 55 meV and :

=
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In the absence of scattering, g becomes the Dirac de.ta
function. The simplest model for scattering, by analiogyv to
Shockley's model for photon scattering of carriers,.++: is

g(x) = exp (-X/wW)/wW

where w is a measure of the scattering strength. The

mean critical distance <x.> is then x. + w. Therefore, the
probability for a carrier to attain exactly the critical impact

ionization energy after traveling a distance x from its origin
is given by the probability distribution,

f(x>xe) = exp(-(X-Xco)/(<Xc>=X¢e)), with
<Xe> > X and f(xX<xc) = 0.

For this choice of f, a(x) becomes, after performing the
convolution indicated by Eg. 9.3.1.

a(x)/r = 1-£(x) - exXp(-c(X-Xc))(1/(1-c{<X>-X))-£(Xx)).

Both f and « are shown in Fig. 12 for X, 0.025, <xc> = 0.05, c
= 32, and r = 30. While the constant ¢ s chosen, as discussed
above, to be compatible with the physica: parameters of the
SSPM, the choice of the remaining parameters represents a
compromise between realism and computaticnal convenience. The
discussion of these choices is postponed until section 9.4,
after the presentation of the equations for p(n,t;1) is
complete.

In the model described above, an inhomogeneous field would
induce a position dependence in X., <Xc>, and possibly r as
well. As the field increases with position, which it does in
the SSPM, x. and <X.> should become smaller, although
constraints upon the variation of the ratio X /<Xc> are unknown.
Such refinements of the model should not be pursued until the
homogeneous case is better understood. These refinements could
in principle be made bv way of a microscopic simulation via the
Boltzmann equation for non-branching trajectories of the
carriers in the SSPM. However, with the expectation that the
variation with position of Xo, <Xc>, and r with position is weak
and will not substantially affect the gualitative conclusions,
the equations for p(n,t;1) are presented and solved below for
the homogeneous field. The equations which lead to h(n) for
history-dependent branching are more complicated then those for
Markov branching, and do not readily yield an anaiytic solution.
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Figure 12, Curve 1 shows a(x)/100 and curve 2 shows f(x)*100

for X. = 0.025 and <xc>
the scaled distance x.

= 0.050.
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The equations are greatly simplified for homogeneous fields,

where a is independent of absolute position, and may be found in

standard texts,!41[12] as reproduced below, namely, for n - :,

p(n,t;1) = -/8dx w'(t-x)p**(n;1), (9.3.2)
where w(t) = p(1,t;1) = exp(-/§dx a(x)), W' = -aw, and
n-1
p**(n,t;1) = ¥ p(k,t:;1)p(n-x,t;1),
k=1
with the usual initial conditions p(0,%t;1) = 0 and p(1,0;1) = 1.

A Markov equation (Eg. 9.2.1) is recovered directly when a is
constant. Since the egquations above usually require a numerical
solution, it is useful to have a check on the results. One test
compares the sum

! p(n,t;1)
n=1

with unity; the computed difference was always less than 2%.
Another, more demanding, test compares the gain calculated as
the first moment of p, and independently <rom the equation for
gain, namely

<n(t)> = w(t)-2/8dx w' (t-x)<n(x)>. (9.3.3)

Comparison between these two mathematically equivalent but
numerically distinct equations always revealed less than a 5%
difference in <n(t)> throughout the range O<t<l1l. A final check
on both the numerical and conceptual aspects is provided by the
calculation of the combinatorial entropy

S(t) = - p(n,t;1) log (p(n,t;1)).
n=1

The entropy is expected and was found to be monotonically
increasing throughout the range of t; more than one spurious
result was detected with this test.

The lifetime of the first carrier w(t), and the gain <n(t)>, are
displaved in Figs. 13 and 14, respectively, for the parameters
Xe = 0.025, <xXe> = 0.050, and r = 30. Fig. 13 includes a
comparison of w(t) with exp(-ra¢g ¢}, which would be the
corresponding Markov result.
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Figure 13. Curve 1 shows the computed w(x) for the non-Markov
process (Eq. 9.3.2 in text). Curye 2 shows the corresponding
Maikov w(x) = exp(—reffx), where reff=7.51. Curve 3 shows
f(x)*10 for comparison. Other parameters as in Figure 12,
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Figure 14. Curve 1 shows the gain (divided by 100) as a

function of position. Curve 2 shows twice the log gain.

Parameters as in Figure 12.
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The coefficient rggs is calculated from dlog<n{t)>/dt +=:., which
would be an exact correspondence if the branching were
Markovian. It is interesting to note that for r 30, refs =
7.51, thereby indicating how the introduction of relatively
small carrier scattering and other history-dependent effects
dramatically suppresses the net growth of the avalanche. As
required by the asymptotic development of Eg. 9.3.3 for any
continuous a, <n(t)> is indeed asymptoticallyv exponential in ¢,
as shown in Fig. 14.

Fig. 15 displays the principal result of the calcuiation of the
solution of Eq. 10.2 for xo = 0.025, <xc> = 0.050, and r = 30,
namely, h(n) = p(n,t;1) for t = 0.985 (Fig. 16 is its
logarithm). For comparison, the corresponding Markov result
(Egq. 9.2.2), is

h(n) = (<n>-1)"1 (1-1/<n>)N,

also shown. Comparison with the observed h(n) in Fig. 11
reveals, a strong gqualitative resemblance between the observed
h(n) and the one calculated for this model, despite the
difference in scales. The difference in scales is deferred to
the following section.

Fig. 17 shows the development of the pulse distribution as a
function of position, namely, p{(n,t;1) recorded for t at 0.800,
0.900, and 0.985. As expected, the most drastic changes occur
in the latter stages of the avalanche. 1In fact, for the greater
part of the growth of the avalanche, p(n,t;1) more nearly
resembles the exponential distribution expected from a Markov
process; the influence of the history-dependence is fully
manifest only in the latter stages (t > 0.8) of the avalanche.
Table V records various statistical attributes of both the
observed and the calculated distributions shown in Fig. 17
namely, the gain <n>, dispersion ¢, the mode np,, (where the
distribution attains the maximum), and the skew k] and the
kuritosis kg, respectivelv. The importance of these gquantities
will be evident during the discussion of the attempts to fit
h{(n) to known distributions.
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Table V. Statistical attributes of calculated and
observed h{(n)

t 0.7 0.8 0.9 0.985 Observed
Npax 127 269 568 1086 30000 = 5000
<n> 144.6 306.4 650.6 1249 35000 : 5000"
o/<n> 0.378 0.378 0.378 0.377 0.26
K1 0.606 0.595 0.570 0.525 0.4
Ko 0.49 0.47 0.44 0.38 -

* s . . .
These values are sensitive to operating temperature and bias.
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Figure 15. Pulse distributions computed for the non-Markov
process (curve 1) and the Markov process (curve 2). The
horizontal axis is n/1000, the vertical axis is multiplied
by 104. Curve 1 is p(n,t=0.985;1), calculated from 9.3.2
and the parameters in Figure 12. Curve 2 is calculated to

match the gain for curve 1.
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Figure 16. Logarithm of the pulse distribution
calculated for the non-larkovian process. The
horizontal axis is n/1NN0.
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Figure 17. The pulse distribution as a function of
position. Curves 1,2, and 3 correspond to t=0.800,
t=0.900, and t=0.985, respectively. The horizontal

axis is n/1000.
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9.4 Discussion

The discussion of the results of the last section is addressed
according to two topics. First, the sensitivity of the computed
h(n) to the phenomenological parameters is discussed. Second,
the interpretation of the computed h(n) with respect to standard
distributions is presented.

The parameters r, X., and <xX.> chosen for this model resulted in
a calculated gain lower, by an order of magnitude, than the
observed gain. The computed gain would be increased by
increasing the branching rate factor r, by decreasing the
respective critical distances x. and <X.>, or both. These two
conditions would be a step towards more realistically modeling
the SSPM, independent of data-matching considerations. First,
the distance chosen here for <x.> corresponds to a mean path
length of 200 A, which may be as much as four times larger than
the appropriate value for the SSPM. In reduced units, more
realistic values for x. and <X.> should each be found between
0.01 and 0.02., Second, the choice of r = 30 is unrealistically
low, for it corresponds to an avalanche spatially confined to a
cylinder the length of the avalanche region with a diameter on
the order of y, the neutral cross-section, (since there are, an
average, 32 impurity atoms in such a cylinder). Although the
spatio-temporal distribution of the carriers in an SSPM pulse is
unknown, it surely is not confined to such a narrow cylinder.

On the other hand, as mentioned earlier, the phenomenological
minimum critical distance X, decreases with position in an
inhomogeneous field. Although this variation is not expected to
be dramatic, small variations in x. may have a large effect on
the gain. For the homogeneous field and fixed r, only a 50%
decrease in X. and <X¢>, respectively, 1s needed to increase the
gain (at t=1) by a factor of 10. Regrettablv, such realism
cannot immediately be pursued computationally, due to the burden
that such a computation would place on the storage capacity of
most supercomputers. The function p(n,t;1) is stored in an
array of nT words long, where T is the number of intervals used
in the numerical integration of Eg. 9.3.2. For T = 512, no
pulse of more than 6,000 carriers could be accommodated on a
computer restricted to 4 million words in memory. The
calculation of h(n) where <n> = 15,000 requires at least 25
million words to adequately represent p(n,%t). A virtual-memory
supercomputer such as the CYBER 205, or a computer attached to a
solid-state storage device, could be employed to make such
calculations, however.
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Such calculations should not be pursued until a more concrete
determination of the parameters r, X., and <X.> is made. A
realistic determination of these parameters could be made via
the Boltzmann equgtion.[sl

Although the Boitzmann eguation does not adeguately treat non-
Markov transport, the non-Markov dynamics of the avalanche are
expected to be evident primarily in the collective properties
(e.g. p(n,t;1)) rather than in single-carrier properties such as
r, Xc, and <X.>. In so far as the immediate goal of this work
is concerned, further calculations are unnecessary, since it has
been shown that a relatively small history-dependence in the
branching (i.e., impact-ionization) rate radically alters the
Markov result and generates a pulse distribution strikingly
similar in shape to that observed in SSPM's. Further, the
results portrayed in Figs. 15 and 17 probably scale with
increasing r and diminished critical distances, (which in turn
increase the gain). The development of h(n) as a function of
position shown in Fig. 17 can be (and has been) alternatively be
reproduced as a function of increasing r, for appropriate fixed
t, Xc and <xX.>. Such a trend balances the tendency of h(n), for
fixed t and r, to assume a more exponential shape with
decreasing X, and <X.>, which corresponds to decreasing t in
Fig. 17. The combination of these trends suggest that the
observed distribution shown in Fig. 11 should be reproduced with
appropriately smaller critical distances and larger rates r, a
choice which, as noted above, indeed corresponds more closely to
the actual device than the choices-of-convenience made for Figs.
15 and 17.

The second topic of concern is the relation petween h(n) to
standard distributions. It is tempting to begin with standard
two-moment distribution, i.e., distributions which require oniy
the first two central moments <n> and ¢2 = <(n-<n>)2>. Fig. 18
shows the computed p(n,t=0.985;1) and the corresponding normal
distribution,

n{A) = (27:02)'1/2 exp(—A2/2),

where A = (n-<n>)/c and <n> and ¢ are taken from Table V. The
{least-sguares) best fit of the normal distribution does not
fare much better, representing a compromise between curves 1 and
2 in Fig. 18. Since both the computed and observed
distributions have an appreciable skew (evident in the long tail
for large n), non-centro-symmetric distributions were attempted.
The best of these was the Weibull distribution w(n), i.e.,
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Figure 18. Curve 1 shows the computed h(n). Curve
2 shows the normal distribution with the gain and
dispersion (variance) matched to the computed h(n).
The horizontal axis is n/100.
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o(n) = ab~@n2-1 exp(-n/b)?2,

where <n> = bl(1+1/a), ¢2=p2(I'(1+2/a)-r2(1+1/a)), and I (n+i)=n!.
The corresponding Weibull distribution is compared with the
computed h(n) in Fig. 19. Neither the normal nor the Weibull
distribution (nor apparently any other two moment distribution)
adequately represents either the observed or computed h(n).

This is evident also from the large values reported for the skew
and the kuritosis, which would each be zero for the normal
distribution.[®! The skew «; and kuritosis k,, defined
respectively by «x71 = <(n-<n>)3>/63 and x5 = <(n-<n>)%>/0% -3,
contain respectively all the third and fourth moment
information. If h(n) is regarded as a perturbation to the
normal distribution, for example, then the skew and kuritosis
might be used to adjust curve 2 in Fig. 18 to match the computed
h(n). The Edgeworth series(9] is the most rapidly converging
perturbation series of moments for the normal distribution 7z,
namely,

E(n) = n(a)-k1/31 n(3)(a)+xp/at nl4)(a)+10ei/81 n(6)(a),

where n(m) is the mth derivative of 5. W:ith the large values of
k1 and ky found in Table 7 ', however, E(n) actually provides a
worse fit than 7 to the data. Evidently n(n) is not a low-order
perturbation of the normal distribution. It is likely that no
four-moment distribution will provide an adequate representation
of either the observed or computed h{n). Pearson has shown that
if a distribution p(v) satisfies the differential equation

p'(v) = R(4]v) p(v), RI4Ly) = a-+v
az+azv+aav?

then p may be determined by its four moments.-2] Fig. 20 shows
log R, where R(n) = dlog(h(v))/dv}|,=n for the computed n{n).

The best fit of R(4)(n) to the computed R(n) fails to adequately
describe R(n), and further, fits of R(m)(n) for m up to 10 aiso
failed to adequately represent R. An examination of log R
reveals that R must contain a factor which decreases
exponentially with n, ratner than according to a simple power
law. Fig. 20 therefore indicates that no distribution built
from a small number (or possib.y any finite number) of moments
will adequately represent nh(n).
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Figure 19. As in Figure 15, curve 2 corresponds to
the Weibull distribution which matched the mean
and the mode.
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Figure 20, log R, as defined in the text. The horizontal

axis is n/1000.
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The difficulty with sucn fits may be examined in another wav,
with the characteristic function!10!

¢(x) = I exp (2zinx/N) h(n+l).

n=0

Fig. 21 shows the real and imaginary parts of the computed ¢ for
h(n) p(n,t=0.985;1). In general,

Kk
exp (L -B(ix)Mm),
m=1 m!

o (xX)

where the kp, are the cumulants, which are in turn directly
related to the central moments <{n-<n>)M>, In particular,
ki=<n>, kp=02, ka3=<(n-<n>)3>, and ky=<(n-<n>)%4>-304. For the
normal distribution 7, Kp,2=0, so the characteristic function is

¢n(x) = exp(i<n>x—g2x2).
2

However, neither the real nor the imaginary parts of the
computed ¢ closely resemble ¢,, and with such large values of kj
and kg4 (which may be found from «; and «, in Table V), an
expansion of ¢, with only a few cumulants has little hope of
adequately repfesenting ¢, and therefore, of h. Figs. 18
through 21 all vividly demonstrate that h(n) should not be
casually described as a normal distribution, or by any of the
standard two and four moment distributions commonly discussed in
textbooks. This information puts important restrictions on
modeling which might otherwise have produced standard
distributions. It is satisfying to note that the historv-
dependent model described in the last section generates an h(n)
which captures so many non-standard features of the observed
h{n). Nevertheless, it is stiil desirable to discover a compact
representation for the computed h(n). One last attempt to do
this employs the generating function of h{(n), namely,

H(z) = I h(n+1)zD.
n=0
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Figure 21, Real and Imaginary Parts of @(x).
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For the Markov case, the generating function for p(n.%t::1) (=%
fixed) is(41[5]

p(z) = I p(n+l,t;1) = z , a¢ = f§ds a(s).
n=0 qe(l-z(1-1/qg) ¢ °°

A reasonable hope is that even the non-Markov H(z) can (for m=1)
be approximated by a convergent sequence (in the degree of the
numerator and denominator) rational functions. The existence of
a convergent rational function representation, it turns out,
cannot be guaranteed for H(z), but is guaranteed514l for

, J . 23
F(z) = szJ, where £y = [ 4-J( k)h(k+1).

L
j=0 k=0 -

Then, if z. is the smallest (in absolute value) real pole of
F(z),

z=1 = 1im f1/n,
C n-=x n

and sol1l4] £, = exp(an+b;nl/2+byni/3+. . -c log(n)+k), where a =
-log(zg). With a functional fit to fj performed in this manner,
the h(k) mav be found recursively from tre f;. While this is a
general procedure, it often suffers from accumulated floating-
point errors inherent in machine-based computations, as in the
case attempted here.
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10.0 CONCLUSIONS

The operating conditions suitable for space-based astronony
applications using the SSPM were determined. In order to
maximize the SSPM's dynamic range, the device should be operated
at the low end of the usable temperature range. For the devices
characterized in this study, the recommended operating
temperature is 7 K. To maximize guantum efficiency at this
temperature, the highest bias voltage that can be applied
without a significant risk of overloading the device is 7.0 V.

A monostable multivibrator (one-shot) triggered on the SSPM
output pulses can be used to effectively eliminate noise caused
by fluctuations in bias current and pulse height.

The avalanche of conduction-band electrons in the SSPM grows by
the successive impact-ionization of randomiv distributed neutral
impurities heavily concentrated in a region about 4 microns long
(measured along the direction of the electric field).

The impact-ionization process reguires electrons to attain a
threshold:; this requirement introduces a minimum critical
distance from their generation over which the electrons must
travel before impact-ionization of neutra. impurities can occur.
Scattering of sub-threshold carriers together with the random
distribution of impurities conspire to produce a distribution of
critical impact-ionization distances. A model critical distance
distribution has been developed and incorporated into a non~
Markov branching process appropriate for non-interacting
carriers in a homogeneous electric field in one spatial
dimension. The numerical solution of this process demonstrates
that a critical distance distribution concentrated over
distances as small as a few per cent of the avalanche region's
length is sufficient to dramatically alter the distribution of
the number of electrons in the pulse from the Markov result.

The computed number distribution reproduces the gualitative
features of the observed distribution for reasonable parameters,
showing a trend towards gquantitative agreement for a more
realistic if less convenient choice of parameters.
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Although the model does not account for carrier-carrier
interactions, such interactions are expected to be important for
very high gain devices e.g., <n> 2z 50,000. The effect of these
interactions is expected to be evident in the truncation of the
long large-n tail observed in the number distribution for lower-
gain devices. 1In fact, the number distribution observed for
such high gain devices more closely resembles the normal
distribution, and the large-n tail appears to be suppressed.

Future work should investigate the effect of an inhomogeneous
electric fieid. Such a field aiters the critical distance
distribution with position, and corresponds more closely to the
environment in the SSPM. Because the variation is expected to
be gentle, the gqualitative results found for the homogeneous
fieid would be expected to repeat for the inhomogeneous field.
More importantly, microscopic ensemble simulations of the three
dimensional avalanche via the Boltzmann equations should be
pursued. Although the Boltzmann dynamics are essentially
Markovian, and the avalanche is essentially a non-Markovian
process, the non-Markov dynamics are expected to be evident
primarily in collective properties. The single-carrier
properties (e.g., critical distances, mobility) are therefore
expected to still be well-approximated by the Boltzmann
equations. The Boltzmann equation could be used to generate a
critical impact-ionization distance distribution based upon only
microscopic parameters, and single-carrier dvnamics, which could
subsequently be employed in the non-Markov process modeled
above.

The Bolitzmann equation aiso permits the investigation of
carrier-carrier interactions which, in a sufficiently large and
concentrated pulse, could induce a coilapse of the electric
field and thereby limit the growth of the avalanche. Such a
calculation would provide a gualiitative assessment of the
importance of scattering and acceleration delays vs. that of
carrier-carrier interactions. Such issues are crucial for the
design of improvements *to the SSPM,.
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12.0 ABSTRACT

SSPM detectors were tested under low-background, low temperature
conditions to determine the conditions producing optimal
sensitivity in a space-based astronomy svstem such as a liguid-
helium-cooled telescope in orbit. Detector temperatures varied
between 6 and 9 K, with background flux ranging from 1013 to
<106 photons/cmZ—s. Measured parameters included quantum
efficiency, noise, dark current and spectral response,

Experimental data were reduced, analyzed and combined with
existing data to build an SSPM data base. The results were
compared to analytical models of SSPM performance where
appropriate models existed.

A phenomenological model of the SSPM avalanche process which
predicts the shape of the observed pulse distribution is
presented. An accurate prediction of this pulse distribution
requires the inclusion of small history-dependent effects on the
carrier transport, effects which are neglected in the
traditional (Markovian) treatments. The model clarifies the
consequences of carrier scattering for the development of the

avalanche.
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A phenomenological model of the SSPM avalanche process which predicts the shape
of the observed pulse distribution is presented. An accurate prediction of this
pulse distribution requires the inclusion of small history-dependent effects on
the carrier transport, effects which are neglected in the traditional (Markovian)
treatments. The model clarifies the consequences of carrier scattering for the
development of the avalanche.
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