6,962 research outputs found

    Contact transformations and the theory of optimal control

    Get PDF
    Contact transformation of independent and dependent variables of Hamilton-Jacobi equatio

    Past and Future of CG J1720-67.8: Constraints from Observations and Models

    Full text link
    We discuss the evolution of the peculiar, nearby (z = 0.045), compact galaxy group CG J1720-67.8, by interpreting a large amount of observational information on the basis of our recent results from spectrophotometric evolutionary synthesis models and new N-body/SPH simulations. The group, that is composed of two spiral galaxies with a mass ratio approximately 4:1 and an S0 galaxy in a particularly compact configuration, is undergoing an active pre-merging phase. Several tidal features are signposts of the complex dynamics of the system. We suggest that the observed structure of the tidal features can be explained only if all three galaxies are involved in a strong interaction process.Comment: 5 pages, 3 (degraded) figures. Proc. ESO Workshop "Groups of galaxies in the nearby Universe", Santiago, Chile, 5-9 Dec. 2005, ESO Astrophysics Symposia, eds. I. Saviane, V. Ivanov & J. Borissova, Springer-Verla

    Performance of alkaline battery cells used in emergency locator transmitters

    Get PDF
    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    Modeling of intrinsic electron and hole trapping in crystalline and amorphous ZnO

    Get PDF
    Recent advances in ultrafast liquid quenching and deposition of thin films on cold substrates make growing amorphous (a)‐ZnO films increasingly feasible. The electronic structure and electron and hole trapping properties of amorphous ZnO are predicted using density functional theory (DFT) simulations with a hybrid density functional (h‐DFT). An ensemble of fifty 324‐atom structures is employed to obtain the distribution of structural and electronic properties of a‐ZnO. The results demonstrate that electrons do not localize in a‐ZnO, but holes form deep localized states with average trapping energy of about 0.9 eV. It is also shown that dispersion at the conduction band minimum (CBM) is not affected upon amorphization, suggesting that high electron mobility should be retained. An average value of a‐ZnO band gap of 3.36 eV is calculated with no states splitting into the band gap, which accounts for no substantial detrimental effect on the optical transparency upon amorphization. These findings may have important implications for future applications of a‐ZnO as a transparent conductor and photocatalyst

    Observations from Space: A Unique Vantage Point for the Study of the Environment and Possible Associations with Disease Occurrence

    Get PDF
    Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss the Public Health Projects developed to work with Grantees and the CDC while providing them with information on opportunities for future collaborations with NASA for future research

    New synchronization method for <i>Plasmodium falciparum</i>

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes. &lt;b&gt;Methods&lt;/b&gt;: Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites. &lt;b&gt;Results&lt;/b&gt;: Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents. &lt;b&gt;Conclusions&lt;/b&gt;: The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle

    Comparing Laser Diffraction and Optical Microscopy for Characterizing Superabsorbent Polymer Particle Morphology, Size, and Swelling Capacity

    Get PDF
    In this study, we determined the accuracy and practicality of using optical microscopy (OM) and laser diffraction (LD) to characterize hydrogel particle morphology, size, and swelling capacity (Q). Inverse-suspension-polymerized polyacrylamide particles were used as a model system. OM and LD showed that the average particle diameter varied with the mixing speed during synthesis for the dry (10–120 lm) and hydrated (34–240 lm) particles. The LD volume and number mean diameters showed that a few large particles were responsible for the majority of the water absorption. Excess water present in the gravimetric swelling measurements led to larger Qs (8.2 6 0.37 g/g), whereas the volumetric measurements with OM and LD resulted in reduced capacities (6.5 6 3.8 and 5.7 6 3.9 g/g, respectively). Results from the individual particle swelling measurements with OM (5.2 6 0.66 g/g) statistically confirmed that the volumetric methods resulted in a reduced and more accurate measurement of the Q than the gravimetric method
    corecore