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The main results achieved for NAS 2-2351 are as follows: 

1. The primary advantage in using contaut transformations is that 

if the Hamilton-Jacobi partial differential equation can be reduoed to 

a linear partial differential equation by a suitable contact trsns- 

formation, then the number of ordinary differential equations required 

to generate a solution are reduced. 

2. The Hamilton-Jacobi theory is inadequate, not because of the 

diecontinuities introduaed by the bounded controls, but because of 

the lack of suffiaient conditions required to resolve the singular 

problem. 

3. A new system of partial differential equations characterizing 

the control problem with an enlarged aontrol set has been derived in 

conjunction with a new optimization procedure. 



1. Discontinuities in the Hamilton-Jacobi Theorg 

The use of the Hamilton-Jacobi theory in the calculus of variations 

is well established; 1 the extension of these idea6 and concepts to control 

theory2 especially with regard to the determination of the feedback control, 

is quite recent, In these theories the Hamilton-Jacobi partial differen- 

tial equation plays a central role, its complete integral determining in 

the alas&Cal sense, the solution of the canonioal equations. One aspect of 

contact transformations in relationship to the Hamilton-Jacobi theory is 

that the form of the canonical equations is preserved under a contact 

transformation, The complete integral to the Hamilton-Jacobi equation can 

be veiwed as generating a contact transformation that reduces the problem to 

a point of equilibrium, thus yielding the solutions to the canonical equations. 

However, as pointed out by Kalman;! in his extension of the Caratheodory3 

technique to control theory, the bounded controls create a lack of smooth- 

ness that makes the classical theory appear inadequate. It should be noted 

however that Kalman in his efforts to solve Bushaw's Problem4 did not con- 

struct a complete integral to the Hamilton-Jacobi partial differential 

equation. In solving the same problem, the author transformed the Hamilton- 

Jacobi equation by using a Legendre contact transformation which is a trans- 

formation of both the independent and dependent variables. The resulting 

partial differential equation was linear, the only discontinuity being a 
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forcing term. The solution to the partial differential equation was 

constructed by the method of charaateristics. The main advantage of this 

entire treatment of the problem is that the number of ordinary differential 

equations to be solved are fewer in the linear case than in the non-linear 

ca8e. The lack of adequate smoothness was not reflected in the treatment 

of the problem, and the reason for this is that the solution to the 

Hamilton-Jacobi equation wae constructed along aharacteristice. The 

Hamilton-Jaaobi equation is really a statement about the directional 

derivative of the cost funational; and the Hamiltonian of the system is 

smooth along the characteristics. As an indication of this smoothness, 

it is well known that when the Hamiltonian does not involve the time ex- 

plicitly, it is a constant along the characteristics. 

To illustrate the fact that the Hamilton-Jacobi equation for the 

problem of Bushaw has meaning everywhere, we shall evaluate the derivatives 

of the cost functional in the neighborhood of the switching curve. For 

the purposes of this demonstration we have reversed the strategy to that of 

transferring from the origin to any point (xl, x2) in minimum time. To 

facilitate the computation we shall consider the point (1, l+ 6); at this 

point the Hamilton-Jacobi equation becomes 

F x1 I l,l+S 
(l+& - q, 1+6+ If 1, J- 1 = O 

9 9 

The derivatives of the cost functional V (=t> are computed by 

determining the optimal times for the solutions of the system of differen- 

tial equations, 
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$1 2 =x 

i2 = - x1 + u 

to achieve certain points. 

x2 

I I u(1 

Figure 1 

Denoting by to, tl, and t2 the optimal times to attain the points (l,l+ 61, 

(1 + cl, 1 + 6) and (1, 1 +&+c2) then 

=-I lim 5- to 

ax1 = cl-o Cl = ,+g 
Ll+S 
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It is readily seen that 

V 9- 1 PO .- 
x2 

l&+6 
( > G 

and is undefined for 6 = 0; however, the Hamilton-Jacobi equation still 

holds, the singularities cancelling. 

2. Inadequacies of the Hamilton-Jacobi Theory 

One significant aspect of the Hamilton-Jacobi approach to control 

theory is that there are no singular problems, known by the authors, that 

are treated by this method. By singular, we refer specifically to those 

problems that are linear in the control, where the maximum principle fails 

to yield any information regarding the optimal control once the coeffiuient 

of the control in the Hamiltonian vanishes. The vanishing of the coefficient 

of the control is termed the singular condition, and sometimes is used to 

determine the singular control. One important question concerning these 

singular problems is how the singular condition should be interpreted with 

regard to the Hamilton-Jacobi equation. 

In order to gain insight into this aspect of the Hamilton-Jacobi 

theory, consider the following example of a time optimal problem5 for 

which an optimal singular arc exists. 
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_. .--- -...-- 

Example 1. 5 1 =x 2-"lx2u 

iI2 = - x2 + u ) I I u Sl. 

The problem is to transfer the state vector from [l, 0] to [2, O] in minimum 

time. This problem can be treated by the Green's theorem approach5, from 

whiah it aan be determined that singular arc, as defined by 

x2 = 0 

is the optimal strategy. The Hamilton-Jacobi equation for this problem is 

V 9- x1 
xluLx - +L-x2x v 

ax22 x2 12x1-l=0 I $-I 

and to test its validity we shall compute the partial derivatives of the 

cost functional V(=t> at a representative point P(xl,x2) on the singular 

aIT* In evaluating these derivatives it should be observed that the com- 

posite trajectories used to determine these derivatives must satisfy the 

optimal strategy as indicated in Fig. 2. 

tp(% x2) U =O 
Figurg 2 

Cp(x,+Ax, , x,1 
I 
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From the definition of the derivatives we have: 

dV lim 5- to dv lim t2- to 
-=Ax-0 dxl 1 ox ; 1 -=0x-o ox 

ax2 2 2 

where to, tl and t2 are the optimal times to achieve the points P(xl,x2), 

P(xl + Ax, x2) and P(xl, x2 +0x,) respectively. Evaluating the deri- 

vatives for the point P(l,O) yields 

F-l R-0 I x1 1 0 I 9 130 
which satisfies both the Hamilton-Jacobi equation and the singular condition, 

at the point P(l,O). This result is to be expected, since the optimal 

strategy was known in advance. In fact the optimal strategy is very crucial 

to the problem, and can give rise to a fallacy in the Hamilton-Jacobi theory 

as demonstrated in the next example 6 . 

Example 2. 

This is an example6 of a time optimal problem which possesses a 

non-optimal singular arc. The differential equations are 

% =u 

f2 = 
2 1 + x2 x1 u I I u(_l 

and the problem is to transfer the state vector [x1,x2] from [O,O] to 

E 1 0,s in minimum time. This problem possesses a singular arc defined 



by x1=0 yielding a singular control u s 0; 'however, by the Green's theorem 

approaoh it can be shown that the optimal control is always bang-bang. 

Since in the Hamilton-Jacobi theory there is no knowledge known beforehand 

regarding the optimality of the singular are, we shall assume the singular 

are to be optimal, and seek a contradiction. The Hamilton-Jacobi equation 

for this problem is 

% ’ 
L! 

2 -aJ +z x2x1 -130 l 

=i % 

I 

Evaluating the derivatives at a point P(O,%) on the singular arc under the 

false assumption that the singular arc is optimum, yields 

(yJ -0 
I 

z =1 
ax1 

0.l ax2 0% I 1 

which satisfies the Hamilton-Jacobi equation at the point P(O,%) and does 

not yield a contradiotion. The fallacy is now obvious and indicates an 

inadequacy of the Hamilton-Jacobi theory for singular problems. 

3. The Pfaffian Approach to Singular Problems 

There remains to be resolved in the Hamilton-Jacobi approach such 

questions as the optimality of the singular arc and the role of the singular 

condition in the Hamilton-Jacobi theory. One feature that characterizes the 

singular problem is that the process of determination of the singular control 

does not involve the control bounds. This raises the conjecture that if 
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the singular control is optimal, that is, the singular arc lies on the 

boundary of the reachable set, then it is better than any bang-bang control 

irrespective of the magnitude of the control bounds. 

In order to test this conjeoture then as the magnitude of the control 

gets very large it beaomes necessary to inolude "delta functions1q or 

,,impulses,, in the control set. It should be noted that this procedure of 

enlarging the control set has been treated by Kreindler7 and Neustadt a in 

their investigations of linear systems. For the purposes of the elementary 

treatment given herein, it suffices to represent u(t) = g where y is a 

function of bounded variation. 

The feasibility of the conjecture is demonstrated for example 1, where 

the reachable sets obtainable in 0s t< ti for the impulsive control, and 

I I 3x the bounded control dt < 1 are shown on Figure 3. 

eachable set with impulsive control 
y(t) a function of bounded variation. 

eachable set with bounded control 

- x1 

I 
Figure 3 
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It is to be observed that the singular arc x2 = 0 lies on the boundary of 

the reachable sets. The reachable set for the impulsive controls is larger, 

and this is due to the linearity of the control together with the consequence 

of impulsive oontrols that some points can be reached in zero time. Sinae 

the reachable set for the impulsive oontrols is more lnolusive, then this 

is the set that should be inspected in order to ascertain the optimality 

of the singular arc. This fact was suggestive of the following pfaffian 

approach which is more general than the Green's theorem approach. Consider 

the following two dimensional system 

jr1 = Al(X) + Bl(x)u; i2=A2(x) + B2(x)u. (3.1) 

The pfaffian associated with the differential equations (3.1) is 

B2(x)dxl - B,(x)dx, Ed {B2bd Al(x) -Bl(x) A2(x)] dt , (3.2) 

and this differential form holds independent of the control. It is assumed 

that this pfaffian is non-integrable'1 otherwise all solutions of (3.1) 

will be contained in a surface independent of the control, so that the 

system would not be controllable. Two functions W(x) and r (x> which 

satisfy 

are determined. 

0 P (X> B2bd and e P -/u(x) Bl(x) (3.3) 

It should be noted that equations (3.3) do not uniquely 

determine W(x) and P (xl; however, once W(x) has been selected, then r 
(x) 

10 



is uniquely determined. If W,(x) and/yl(x) are two functions that satisfy 

(3.3) and if f(e) is any C' function with derivative f'(a) then 

w,(x) I f(Wl(X)) 

/qx> f jdl (xl f'(Wl(X>) 
(3.4) 

also satisfy the relations (3.3). By virtue of (3.3) the pfaffian (3.2) 

transforms into 

dW = (3.5) 

The procedure followed so far is the usual construction9 used to deter- 

mine the integrability conditions for the pfaffian (3.2); that is, if the 

right hand side of (3.5) can be expressed as a function of W alone, then 

the pfaffian (3.2) is integrable. There is, however, a different connotation 

to be inferred. A solution to the pfaffian (3.5) of the form Wnconstant, 

t= constant, represents an "impulsive" solution to the differential 

equations (301>. By the inclusion of impulses in the control set, it does 

not cost any time for the state x to traverse a constant W line. In fact, 

W defines the wave front or zero cost line for the system (3.11, so the 

time optimal problem for the system (3.1) becomes that of determining the 

points on the constant W line where the time rate of change of W as given 

by (3.5) is extremized. The locus of all such points determines the 

singular arcs. Expressing (3.5) as 
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(Xl Al(x) + R (xl A2(x) (3.6) 

by using (3.31, then the values of x1 and x2 constrained to W(x) xconstant, 
dW that make dt stationary are determined by 

d %x> Al(x) + d W(x) J A,(x) 
a x1 8 x1 +$$,,,.I+% '21:' +++ 

b2W(x> JAdX) 
J”1&$ 1 A (xl+% ~x2 + 

d x22 

A2(x) +y ‘>(x’ +A+, = 0 
x2 x2 x2 

(3.7) 

where 1 is a lagrange multiplier. Since from (3.31, W(x) is determined by 

X 
B1(x) + =o 

then (3.7) can be reduced to 

(3.8) 

+ B2(X) 

which together with W(x) = constant, determine the values of x 1 and x 2 
dW that make dt stationary. Differentiating (3.81, which is an identity 
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in x, with respect to x1 and also x2' and using these expressions to 

eliminate the second partial6 of W from (3.9) and finally eliminating the 

first partial8 of W by (3.31, there results 

a Al(x) 2 B1(d 
Bl(x) + Jx2 B2(x) - dx2 A2(x) 

a A2(x) 8 A2(x) 
A2(d + 'T Bl(x) + ax2 = 0 

(3.10) 

Defining a three veator X(x> having components in the t, xl, and x2 

aoordinates of 
c 

B2(x) Al(x) - Bl(x) A2(x); - B2(x); Bl(x) , then (3.10) 

aan be expreased in the succinct form 

x(x> l curl X(x> = 0 (3.11) 

where /x(x, 9 assumed not be be identically zero, has been deleted. This 

expression (3.11) determines the locus of the values of x along whiah g 

is stationary. It should be observed that the integrability condition for 

the pfaffian (3.2) is 

X 
x(x> l curl X(x) Z 0. 

The optimality of the singular arc follows directly from whether g is a 

maximum or a minimum and the change in the value of W required from the 

initial to the final points. 

To illustrate this procedure consider example 1, where the system 

equations are 
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and the problem is to transfer the state from (1,O) to (2.0) in minimum 

time. The pfaffian is 

dxl + xl2 x2 dx2 = (xl'-xl2 x22)dt . 

2 
A choice of W is W = -1 + - x2 

"1 2' 
so the pfaffian becomes 

dW = (1 - x22)dt (3.12) 

The singular arc is given by x2=0, which maximizes g , and since 

W(l,O) p-1, W(2,O) P - 2, i.e., W increases, then the singular arc is 

optimal. 

It should be noted for the above example that the cost (optimal time) 

to traverse from any permissible point to the final point (2,0), with an 

unbounded control set, is 
2 

v(x1,x2) = + "2 1 -7-y. 
7 I 

This cost function does not 

singular condition imposed, 

c 2 

satisfy the Hamilton-Jacobi equation with the 

but rather it satisfies the singular condition 

interpreted as a partial differential equation, which for example 1 is 

2 
x1 

dvA!LpO 
x2 2x1 ax2 

0 
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The resemblance between V and W should be noted, in fact 

w+v+$=o. 

From (3.12) with the singular condition imposed 

dV 
dt=-1 

so that V = tfinal- tinitial. The interesting aspect of the pfaffian 

approach described above is the emergence of a new partial differential 

equation for the cost functional, due in part to the enlarged control set, 

4. A New Partial Differential Equation and 
Optimization Technique 

TO formally justify the new partial differential equation character- 

izing the singular problem, consider the problem of extremizing the integral 
2 

I = 
J[ 

L(t,x)dt + Al(t,x)dxl + ..a + An(t,x)dxn, 
7 (4.1) 

1 

where t as usual represents an exceptional or evolutory axis. The curves 

considered as candidates for the extremal can possess ordinary discontinuities 

so that it suffices to consider a continuous parametrization of the extremal 

by x=x(c) and t= t (C ) with the proviso that t(CY > be monotone. One 

section of arc possible may be parametrized t= const, x ,=xp), x,=x,(6>, 

x3 
=const oOo x =const, n where xl(c) and x2(C) are periodic in- and 



project a Jordan curve C in the xllx2 plane. The contribution to I along 

this section of arc becomes 

AI= 
aA2 & 
'yyq - dx, dS' 

C 
(4.2) 

and since there is no limit to the number of times this aurve may be 

traversed, it becomes possible to make 1 assume any value whatsoever. 

Hence if 1 is to possess an extremal Vah?, 01 mUSt be zero; however, 

since the section of arc considered is quite arbitrary, then it follows 

that &A2(t,x) 

(-- 

@p,x) 

ax1 ax2 

must vanish identically. Similarly it follows for other possible sections 

of arc parametrized by t= constant, x1= const . . . . x4 = x&r) . . . xp = 

x 
P 

(6) . . . xn = constant that 

(4.3) 

Hence (4.3) is satisfied if the functions Aoc (t,x) are the gradient corn-- 

ponents of some scalar function V(t,x), 

AH (t,x) z (4.4) 

The evolutory nature of the t axis prevents the construction of a closed 

curve in each of the t, x 4 planes (o(= 1 . . . n). For example, any para- 

metrization of the form t=t(C): xl=%(e) x2=constant . . . xn=constant, 

16 



will never project a closed curve in the t, x1 plane if t=t(C) is a 

monotone function of(T. This prohibits the above technique from being 

performed on each of the t, x 
o( 

planes (4~ l...n), so that L(t,x) does 

not have to be a gradient component of the scalar function V(t,x>. The 

conclusion is that if I is to possess an extremal value under the assumption 

that the extremal arc can have ordinary discontinuities, then necessarily 

I must be of the form, 

2 
I = 

Jl: 
L(t,x)dt + 9 dxl + . . . n (4.5) 

1 x1 
+ $- (t,x> dx]. 

n 

The extremal arc may be determined either by using Green's theorem as applied 

to each of the t, x o( planes 67(= l...n), or to express (4.5) as 

2 
I = V(t,x)2 - V&x)1 + 

0 
L(t,x) - 

1 

and to extremize the integrand L(t,x) - ' v(t,x> 
& pointwise. The analogous 

Euler-Lagrange equations are 

&L(t,x(t)) _ ~2v(t,x(t>) = o 
a xoc dt dX& 

(a(= l...n) (4.6) 

and they determine the extremal arcs x=x(t). The Green's theorem approach 

would resolve the optimality of such arcs. 

We shall develop the new partial differential equation for the problem 

of minimizing 

I = L(t,x) dt (4.7) 

17 



subject to the constraints 

% = Ad(X) + Bg((x)u (4.8) 

where the control u is to be selected from the enlarged control set and 

as noted previously is given the representation u = ix 
dt' We essentially 

embed this problem into an equivalent integral form as (4.5) and perform 

this operation by a modification of the Kalmzartifice. Expressing (4.8) 

in pfaffian form, with the representation for the control included, as 

dx 4 = A4(x)dt + Ba( (x)dy (4.9) 

which are adjoined to I by the introduction of a scalar function V(t,x,y) 

to yield 

I = L2L dxd (t,x,y)Aa((x) ] dt + g (t,x,y)dxo( - 

- $$-(t,x,y) (4.10) 

To obtain the equivalent integral form as (4.5) then V(t,x,y) is chosen 

so that 

* (t,x,y> Q(x) + dy a! 
dx4 

(t,x,y) z 0 

and I reduces to 

18 
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I XC v(tlXIY)f~n~’ V(tlxlY)i~t~a~ + 

+ ~"T'-"l~(t.X) - $$ (t,x,y) A&x) -5 (t,x,y)] dt 

,x initial 

(4.12) 

The modification of the Kalman ertifioe employed is that along the ex- 

tremal ara x(t) and y(t) which minimizes the integrand pointwise, the 

integrand is chosen to be zero. 

L(t,x(t)) - x 
axd 

(t,x (t),y(t)) A4(x(t)) - (t,x(t),y(t)) 2 0 (4.13) 

Since the extremal arc x(t) y(t) is necessarily determined by 

_ c3 2v(ttx(t>,YW) = 0 
at&f 

o(,d= 1 . . . n 

and 

d2v(t,x(t),y(t)~ A 
ax* dY o( 

(x(t>> + d2v 
at a 

(t,x(t),y(t>> = 0 

then the additional restriction on V(t,x,y) imposed by 4.13 can be ex- 

pressed as 

(4.14) 

(t,x(t)) - 8% - (t,xW,yW) = 0 
at2 

(4.15) 
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With these conditions imposed then (4.12) becomes 

I 3 V~tlxly)final~V~t'X'Y)initi~ (4.16) 

but since the cost I is independent of y, then V(t,x,y) must be inde- 

pendent of y, so that (4.11) reduces to the new partial differentisl 

equation for the cost. 

This brief and formal derivation does not give any geometrical 

insight into the optimization process and the role of the singular arc. 

For the time optimal problem associated with the differential system (4.8) 

there exists a geometrical interpretation which is essentially an extension 

of the two dimensional optimization technique described previously. Sinae 

we are considering the time optimal problem associated with the differential 

system 

dXd dt= ix A&x) + B&x) dt (N= 1 . . . n> 

then the cost V will be a function of the state x only. A one-manifold 

W(x) in En is constructed satisfying 

a w(x) yyq B4(x) g 0 L7(= 1 . . . n> (4.17) 

It should be noted that the complete integral W to (4.17) will contain 

n arbitrary constants, (n-1) constants implicitly plus an additive constant. 

This manifold W(x) is a "zero cost" manifold since it costs no time to 

traverse the characteristics which are determined by 

2 = Bd(x) (4.18) 



and represents the impulsive solution to the differential system (4.8). 

The geometria interpretation of the singular arc for the time optimsl problem 

is that it is the locus of those points of each manifold W(x) where g is 

extremiaed. For solutions satisfying the differential system (4.8) we 

have 

Ad(x) + B4 (x) $ 1 6(= 1 . . . n) 

so that by virtue of (4.17) 

(o(= 1 . . . n> 

The points x-G confined to W - W(x) P 0 where g is extremised is 

necesssrily determined by 

(‘ii) A6 (Ti) + 

(4.19) 

(4.20) 

Co(,J= 1 . . . n) 

The n equations represented by (4.20) together with W-W(E) = 0 aan be 

solved, with suitable assumptions on A(T) B(Z) and W(Z), for the (n+l> 
. 

quantities 31 and nto yield 

A = A(w) 
E = Z(w) 

Hence, substituting for % in (4.19) by (4.21) gives 

dW dW 
- = - (E(W)) A4 (%W) > dt dxd 

(4.21) 

(4.22) 
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which is solved for W = z(t), and thus yielding the solution of the singular 

Z3I-C 

x(t) = z(i(t)> . (4.23) 

This then is the 

analogy with the 

geometric interpretation of the singular arc, and has an 

optimization procedure desaribed previously if we define 

W 

v(x) = S(w(x>> = dW 
4% (x(W)) A@ (W>> 

(4.24) 

dxd 

Now, V(x) satisfies 

<d- 1 . . . n> 

furthermore from (4.22) and (4.24) we have 

dV 1 dt= 

so that for the time optimal problem V(x) represents the aost, thus 

completing the analogy. To show that the arc (4.23) is singular we 

define 

and observe that equations (4.20) become 

(4.25) 

fA( 87 > Id7 
Bf(x(t)) u(t>e 

(4.26) 
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Since (4.17) is an identity in x then 

d zI(x> w(x) dBU (x) 
dxp(dxr Bt(x) + Xf g_ b “6 

=o 

so that 4.26 becomes 

dp&(t) 
dt = - p (t> 

if 

dAy(x(t)) 
+ 

aBY (x(t)) 

dx4 dx4 
u(t) 

3 
(d,Y= 1 . . . n> 

thus showing that the Euler-Lagrange equations are satisfied. From (4.17) 

we have 

p4 (t) B&(t)) = 0 

so that the singular condition is satisfied and hence the ara x(t) is 

singular. 

5. Completeness and Integrabilitx 

For eimplicity and to avoid at this stage a dimension problem, we 

shall consider a three-dimensional system with two controls (u,v) aa 

follows 

% = Al(x) + Bl(x)u + Cl(x>v 

4 = A2(x) + B2(x)u + C,(x>v (5.1) 

%3 = A3(x) + B3(x)u + C3(x)v 

23 



Assuming a time optimal problem then the singular condition for both 

controls u and v implies the existence of a function V satisfying 

2V 
B1 3y 

dV x.0 + B2 dx, + B3 Jx3 

&I &+c v 
c1 ax, + c2 ax2 3 x3 = O 9- 

The P01sson~~ operator applied to these two linear partial differential 

equations yields 

(o(, % L2.3) (5.3) 

If the linear partial differential equations (5.2) are aomplete, then 

equation (5.3) either vanishes identiaally or is a linear combination of 

equation8 (5.21, which implies the vanishing of the determinant 

D= 

B1 
5 

B2 

c2 

By eliminating the controls from equations (5.1) the system can be ex- 

pressed as a single pfaffian 

(C3B2 - C2B3)dxl+ (ClB3-C3Bl)dx2+ (C2Bl-C1B2)dx3 

A2B3) + C2(AlB3- A3Bl) + C3(A2Bl-AlB2) (5.5) 
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The completeness condition D Z 0 implies the integrability of the reduced 

pfaffian, (t= constant) 

(C3B2 -C2B3)dxl + (C1B3-C3Bl)dx2 + (C2B1-C1B2)dx 3 = 0 (5.6) 

that is, it can be expressed, by a suitable choice of an integrating factor, 

as a total differential. By a theorem of Caratheodory', if the pfaffian (5.6) 

is integrable, then in any neighborhood of a givenpoint there exists points 

which are not accessible from the given point along any path satisfying the 

pfaffian (5.6). Conversely, if the linear partial differential equations (5.2) 

are not complete then the pfaffian (5.6) would not be integrable and hence 

there would exist some neightborhood of a given point for which all points 

would be accessible from the given point by paths satisfying the pfaffian 

(5.6). From this can be inferred the result that if the system of linear 

partial differential equations is not aomplete, then the best time optimal 

strategy is impulsive, since the transfer from one state to another can be 

achieved in zero time. This is only a local result since the contra- 

positive of CaratheodoryOs theorem implies some neighborhood rather than 

any neighborhood. If however the system (5.2) of partial differential 

equations is complete, then the pfaffian (5.6) is integrable so that there 

exists a function W(x) and an integrating factor /Ax) such that 

';L;) =#x, [C3(x) B2(x) - C,(x) B3(x)] 

T : /.4(x, [C,(x) B3(x) - C3(x) Bl(x)] 

q :,&) [C,(x) Bl(x) - Cl(x) B2(x)] 

(5.7) 
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Hence, the pfaffian (5.5) aan be expressed as 

dW + C,(A3B2 - A2B3) + C2(A1BJ -A# + C+A2B1- A1B2)] dt = 0 

(5.8) 

and the techniques described previously can now be applied to determine 

the singular arc and its optimality. Therefore the integrability criterion 

for the reduced pfaffian (5.6) determines the exitence or non-existence of the 

singular arc. 
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