59 research outputs found
Age differences in upper extremity joint moments and strength during a laboratory-based tether-release forward fall arrest in older women
Age-related declines in upper extremity muscle strength may affect an older adult’s ability to land and control a simulated forward fall impact. The role of individual upper extremity joints during a forward fall impact has not been examined. The purpose was to evaluate the age differences in upper extremity joint moment contributions during a simulated forward fall and upper extremity muscle strength in older women. A convenience sample of 68 older women (70 (8) yrs) performed three trials of a simulated forward fall. Percentage joint moments of the upper extremity were recorded. Upper extremity muscle strength was collected via handgrip, hand-held dynamometry of the shoulder and elbow and a custom multi-joint concentric and eccentric strength isokinetic dynamometer protocol. Percentage joint moment contributions differed between women in their sixties and seventies with significantly greater relative shoulder joint involvement (P = .008), coupled with lower elbow joint contributions (P = .004) in comparison to 80 year olds. An increase in each year of age was associated with a 4% increase in elbow contribution (Beta = -0.421, r2 = 17.9, P = 0.0001) and a 3.7% decrease in shoulder contribution (Beta = 0.373, r2 = 14.6, P = 0.002). Older women exhibit different landing strategies as they age. Fall injury prevention research should consider interventions focused on these differences taking into account the contributions of upper extremity strength
The reliability and validity of novel clinical strength measures of the upper body in older adults.
Introduction: Research investigating psychometric properties of multi-joint upper body strength assessment tools for older adults is limited. This study aimed to assess the test-retest reliability and concurrent validity of novel clinical strength measures assessing functional concentric and eccentric pushing activities compared to other more traditional upper limb strength measures.
Methods: Seventeen participants (6 males and 11 females; 71 ± 10 yrs) were tested 2 days apart, performing three maximal repetitions of the novel measurements: vertical push-off test and dynamometer-controlled concentric and eccentric single-arm press. Three maximal repetitions of hand-grip dynamometry and isometric hand-held dynamometry for shoulder flexion, shoulder abduction and elbow extension were also collected.
Results: For all measures, strong test-retest reliability was shown (all ICC > 0.90, p 0.8, p < 0.001).
Discussion: The push off test and dynamometer-controlled concentric and eccentric single-arm press are reliable and valid strength measures feasible for testing multi-joint functional UE strength assessment in older adults. Higher precision error compared to traditional uni-planar measures warrants caution when completing comparative clinical assessments over time
Fall arrest strategy training improves upper body response time compared to standard fall prevention exercise in older women: A randomized trial
Introduction: Exercise can decrease fall risk in older adults but less is known about training to reduce injury risk in the event a fall is unavoidable. The purpose of this study was to compare standard fall prevention exercises to novel Fall Arrest Strategy Training (FAST); exercises designed to improve upper body capacity to reduce fall-injury risk in older women.
Method: Forty women (mean age 74.5 years) participated in either Standard (n=19) or FAST (n=21) twice per week for 12 weeks. Both interventions included lower body strength, balance, walking practice, agility and education. FAST added exercises designed to enhance forward landing and descent control such as upper body strengthening, speed and practice of landing and descent on outstretched hands.
Results: Both FAST and Standard significantly improved strength, mobility, balance, and fall risk factors from pre to post-intervention. There was a significant time by group interaction effect for upper body response time where FAST improved but Standard did not (p = .038).
Discussion: FAST resulted in similar gains in factors that reduce fall risk as a standard fall prevention program; with the additional benefit of improving speed of arm protective responses; a factor that may help enhance landing position and reduce injury risks such as head impact during a forward fall
HTAP3 fires: towards a multi-model, multi-pollutant study of fire impacts
Open biomass burning has major impacts globally and regionally on atmospheric composition. Fire emissions include particulate matter, tropospheric ozone precursors, greenhouse gases, as well as persistent organic pollutants, mercury and other metals. Fire frequency, intensity, duration, and location are changing as the climate warms, and modelling these fires and their impacts is becoming more and more critical to inform climate adaptation and mitigation, as well as land management. Indeed, the air pollution from fires can reverse the progress made by emission controls on industry and transportation. At the same time, nearly all aspects of fire modelling – such as emissions, plume injection height, long-range transport, and plume chemistry – are highly uncertain. This paper outlines a multi-model, multi-pollutant, multi-regional study to improve the understanding of the uncertainties and variability in fire atmospheric science, models, and fires’ impacts, in addition to providing quantitative estimates of the air pollution and radiative impacts of biomass burning. Coordinated under the auspices of the Task Force on Hemispheric Transport of Air Pollution, the international atmospheric modelling and fire science communities are working towards the common goal of improving global fire modelling and using this multi-model experiment to provide estimates of fire pollution for impact studies. This paper outlines the research needs, opportunities, and options for the fire-focused multi-model experiments and provides guidance for these modelling experiments, outputs, and analysis that are to be pursued over the next 3 to 5 years. It proposes a plan for delivering specific products at key points over this period to meet important milestones relevant to science and policy audiences
Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores
Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. Methods: 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.Peer reviewe
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/ taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
- …