44 research outputs found

    Pkhd1

    Get PDF
    Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd

    The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance

    Get PDF
    BACKGROUND: Klinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement. METHODS: In this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured. RESULTS: Before hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups. CONCLUSIONS: We find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions

    Beyond the Exome: What’s Next in Diagnostic Testing for Mendelian Conditions

    Get PDF
    Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders

    Identification of Genetic Etiology in Disorders of Sex Development

    Get PDF
    Disorders of Sex Development (DSD) are defined as “congenital conditions in which development of chromosomal, gonadal, or anatomic sex is atypical.” These conditions have an approximate frequency of 0.5-1% of live births and encompass a wide variety of urogenital abnormalities ranging from mild hypospadias to sex reversal. Lack of standardized anatomical/endocrine phenotyping and the limited number of known DSD genes with poor genotype/phenotype correlation have hampered the field of clinical management, leaving many patients without a definitive genetic diagnosis. Thus, the focus of this thesis is to identify the underlying pathogenic genetic mutations that disrupt development of urogenital structures, leading to Disorders of Sex Development in humans.The traditional trend of diagnostic approach for patients with DSD is to select candidate gene testing by searching for additional phenotypic and metabolic information through imaging studies and endocrine tests that could explain the patient’s phenotype. This approach is usually ineffective, costly and time-consuming. To address this issue and identify genetic variants leading to DSD, we utilized exome sequencing, in patients diagnosed with abnormal sex development. We show that exome sequencing has transformed the field of clinical genetic diagnosis by increasing the rate of diagnosis by approximately 30% and has become a method of choice for many clinicians. Although exome sequencing provides much higher diagnostic yields for DSD patients than the conventional techniques, more than half of the patients tested with ES still do not possess a specific genetic diagnosis. Rather, in these patients ES identifies hundreds of variants of unknown clinical significance (VUS). To investigate the role of these variants in the 46,XY subset of DSD patients, we performed gonadal gene expression studies in C57BL/6J-YPOS mice modeling the phenotype of human 46,XY individuals to identify genes important in sex development. We used these genes to filter VUS identified in 46,XY DSD exome negative cases. We identified 15 novel candidate genes with mutations in 46,XY DSD patents that may be associated with disease pathogenesis.Due to innate limitations of exonic short read sequencing, many native variants are not identified by exome sequencing. To this end, we utilize genome sequencing in conjunction with a novel genome mapping technology in order to uncover the full spectrum of variations present in a human genomes. Collectively, these two technologies provide a physical map and a base pair-level DNA resolution allowing for identification of novel pathogenic variants that were previously inaccessible
    corecore