1,849 research outputs found

    Credible threat: Perceptions of pandemic coronavirus, climate change and the morality and management of global risks

    Get PDF
    Prior research suggests that the pandemic coronavirus pushes all the “hot spots” for risk perceptions, yet both governments and populations have varied in their responses. As the economic impacts of the pandemic have become salient, governments have begun to slash their budgets for mitigating other global risks, including climate change, likely imposing increased future costs from those risks. Risk analysts have long argued that global environmental and health risks are inseparable at some level, and must ultimately be managed systemically, to effectively increase safety and welfare. In contrast, it has been suggested that we have worry budgets, in which one risk crowds out another. “In the wild,” our problem-solving strategies are often lexicographic; we seek and assess potential solutions one at a time, even one attribute at a time, rather than conducting integrated risk assessments. In a U.S. national survey experiment in which participants were randomly assigned to coronavirus or climate change surveys (N = 3203) we assess risk perceptions, and whether risk perception “hot spots” are driving policy preferences, within and across these global risks. Striking parallels emerge between the two. Both risks are perceived as highly threatening, inequitably distributed, and not particularly controllable. People see themselves as somewhat informed about both risks and have moral concerns about both. In contrast, climate change is seen as better understood by science than is pandemic coronavirus. Further, individuals think they can contribute more to slowing or stopping pandemic coronavirus than climate change, and have a greater moral responsibility to do so. Survey assignment influences policy preferences, with higher support for policies to control pandemic coronavirus in pandemic coronavirus surveys, and higher support for policies to control climate change risks in climate change surveys. Across all surveys, age groups, and policies to control either climate change or pandemic coronavirus risks, support is highest for funding research on vaccines against pandemic diseases, which is the only policy that achieves majority support in both surveys. Findings bolster both the finite worry budget hypothesis and the hypothesis that supporters of policies to confront one threat are disproportionately likely also to support policies to confront the other threat.publishedVersio

    A hybrid double-dot in silicon

    Full text link
    We report electrical measurements of a single arsenic dopant atom in the tunnel-barrier of a silicon SET. As well as performing electrical characterization of the individual dopant, we study series electrical transport through the dopant and SET. We measure the triple points of this hybrid double dot, using simulations to support our results, and show that we can tune the electrostatic coupling between the two sub-systems.Comment: 11 pages, 6 figure

    Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    Get PDF
    UnlabelledInvestigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne.ImportancePropionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne

    Limited Systemic Sclerosis Patients with Pulmonary Arterial Hypertension Show Biomarkers of Inflammation and Vascular Injury

    Get PDF
    Pulmonary arterial hypertension (PAH) is a common complication for individuals with limited systemic sclerosis (lSSc). The identification and characterization of biomarkers for lSSc-PAH should lead to less invasive screening, a better understanding of pathogenesis, and improved treatment.Forty-nine PBMC samples were obtained from 21 lSSc subjects without PAH (lSSc-noPAH), 15 lSSc subjects with PAH (lSSc-PAH), and 10 healthy controls; three subjects provided PBMCs one year later. Genome-wide gene expression was measured for each sample. The levels of 89 cytokines were measured in serum from a subset of subjects by Multi-Analyte Profiling (MAP) immunoassays. Gene expression clearly distinguished lSSc samples from healthy controls, and separated lSSc-PAH from lSSc-NoPAH patients. Real-time quantitative PCR confirmed increased expression of 9 genes (ICAM1, IFNGR1, IL1B, IL13Ra1, JAK2, AIF1, CCR1, ALAS2, TIMP2) in lSSc-PAH patients. Increased circulating cytokine levels of inflammatory mediators such as TNF-alpha, IL1-beta, ICAM-1, and IL-6, and markers of vascular injury such as VCAM-1, VEGF, and von Willebrand Factor were found in lSSc-PAH subjects.The gene expression and cytokine profiles of lSSc-PAH patients suggest the presence of activated monocytes, and show markers of vascular injury and inflammation. These genes and factors could serve as biomarkers of PAH involvement in lSSc

    Combating Cancer Through Public Health Practice in the United States: An In-Depth Look at the National Comprehensive Cancer Control Program

    Get PDF
    Cancer is the second leading cause of the death in the United States (U.S.). The National Comprehensive Cancer Control Program (NCCCP) is a national, public health practice program funded by the U.S. Centers for Disease Control and Prevention. The NCCCP has been planning and implementing interventions to reduce the burden of cancer since 1998. Interventions are implemented across three areas primary prevention, early detection, and survivorship using health systems and environmental changes to promote sustainable cancer control. The aim of this chapter is to provide a summary of the NCCCP, and highlight specific examples of interventions and successes to aid cancer planning in other countries. Cancer plan analyses show that all NCCCP participant cancer plans address reducing tobacco use for cancer prevention and 98% contain activities to increase colorectal cancer screening. The vast majority implement activities to improve the quality of life following a cancer diagnosis (94%). Relatively fewer cancer plans contain activities to reduce radon exposure (42%), promote human papilloma virus vaccination (62%), and incorporate the use of genomics in cancer control (56%). The examples of NCCCP activities demonstrate success in controlling cancer and other non-communicable diseases through public health practice

    The atypical chemokine receptor Ackr2 constrains NK cell migratory activity and promotes metastasis

    Get PDF
    Chemokines have been shown to be essential players in a range of cancer contexts. In this study, we demonstrate that mice deficient in the atypical chemokine receptor Ackr2 display impaired development of metastasis in vivo in both cell line and spontaneous models. Further analysis reveals that this relates to increased expression of the chemokine receptor CCR2, specifically by KLRG1+ NK cells from the Ackr2−/− mice. This leads to increased recruitment of KLRG1+ NK cells to CCL2-expressing tumors and enhanced tumor killing. Together, these data indicate that Ackr2 limits the expression of CCR2 on NK cells and restricts their tumoricidal activity. Our data have important implications for our understanding of the roles for chemokines in the metastatic process and highlight Ackr2 and CCR2 as potentially manipulable therapeutic targets in metastasis

    Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population

    Get PDF
    Improving yield prediction and selection efficiency is critical for tree breeding. This is vital for macadamia trees with the time from crossing to production of new cultivars being almost a quarter of a century. Genomic selection (GS) is a useful tool in plant breeding, particularly with perennial trees, contributing to an increased rate of genetic gain and reducing the length of the breeding cycle. We investigated the potential of using GS methods to increase genetic gain and accelerate selection efficiency in the Australian macadamia breeding program with comparison to traditional breeding methods. This study evaluated the prediction accuracy of GS in a macadamia breeding population of 295 full-sib progeny from 32 families (29 parents, reciprocals combined), along with a subset of parents. Historical yield data for tree ages 5 to 8 years were used in the study, along with a set of 4113 SNP markers. The traits of focus were average nut yield from tree ages 5 to 8 years and yield stability, measured as the standard deviation of yield over these 4 years. GBLUP GS models were used to obtain genomic estimated breeding values for each genotype, with a five-fold cross-validation method and two techniques: prediction across related populations and prediction across unrelated populations

    Simulating Radiating and Magnetized Flows in Multi-Dimensions with ZEUS-MP

    Full text link
    This paper describes ZEUS-MP, a multi-physics, massively parallel, message- passing implementation of the ZEUS code. ZEUS-MP differs significantly from the ZEUS-2D code, the ZEUS-3D code, and an early "version 1" of ZEUS-MP distributed publicly in 1999. ZEUS-MP offers an MHD algorithm better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the Method of Characteristics scheme first suggested by Hawley and Stone (1995), and is shown to compare quite favorably to the TVD scheme described by Ryu et. al (1998). ZEUS-MP is the first publicly-available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules may be used in one, two, or three space dimensions. Self gravity may be included either through the assumption of a GM/r potential or a solution of Poisson's equation using one of three linear solver packages (conjugate-gradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported. Because ZEUS-MP is designed for simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (256^3 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.Comment: Accepted for publication in the ApJ Supplement. 42 pages with 29 inlined figures; uses emulateapj.sty. Discussions in sections 2 - 4 improved per referee comments; several figures modified to illustrate grid resolution. ZEUS-MP source code and documentation available from the Laboratory for Computational Astrophysics at http://lca.ucsd.edu/codes/currentcodes/zeusmp2
    corecore