2,236 research outputs found

    Gyroless Nanosatellite Attitude Determination Using an Array of Spatially Distributed Accelerometers

    Get PDF
    The low size and budget of typical nanosatellite missions limit the available sensors for attitude estimation. Relatively high noise MEMS gyroscopes often must be employed when accurate knowledge of the spacecraft’s angular velocity is necessary for attitude determination and control. This thesis derived and tested in simulation the “Virtual Gyroscope” algorithm, which replaced a standard gyroscope with an array of spatially distributed accelerometers for a 1U CubeSat mission. A MEMS accelerometer model was developed and validated using Root Allan Variance, and the Virtual Gyroscope was tested both in the open loop configuration and as a replacement for a gyroscope in a Multiplicative Extended Kalman Filter. It was found that the quality of the Virtual Gyroscope’s rate measurement improved with a larger and higher quality array, but the error in the estimate was very large. The low signal-to-noise ratio and the unknown bias in the accelerometers caused the angular velocity estimate from the accelerometer array to be too poor for use in the propagation step of the Kalman filter. The Kalman filter performed better with attitude measurements alone than with the Virtual Gyroscope, even when the attitude were delivered at a low rate with added noise. Overall, the current Virtual Gyroscope algorithm that is presented in this thesis is not suitable to replace a MEMS gyroscope in a nanosatellite mission, although there is room for future improvements using bias prediction for the individual accelerometers in the array

    A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data

    Get PDF
    The accurate identification of the route of transmission taken by an infectious agent through a host population is critical to understanding its epidemiology and informing measures for its control. However, reconstruction of transmission routes during an epidemic is often an underdetermined problem: data about the location and timings of infections can be incomplete, inaccurate, and compatible with a large number of different transmission scenarios. For fast-evolving pathogens like RNA viruses, inference can be strengthened by using genetic data, nowadays easily and affordably generated. However, significant statistical challenges remain to be overcome in the full integration of these different data types if transmission trees are to be reliably estimated. We present here a framework leading to a bayesian inference scheme that combines genetic and epidemiological data, able to reconstruct most likely transmission patterns and infection dates. After testing our approach with simulated data, we apply the method to two UK epidemics of Foot-and-Mouth Disease Virus (FMDV): the 2007 outbreak, and a subset of the large 2001 epidemic. In the first case, we are able to confirm the role of a specific premise as the link between the two phases of the epidemics, while transmissions more densely clustered in space and time remain harder to resolve. When we consider data collected from the 2001 epidemic during a time of national emergency, our inference scheme robustly infers transmission chains, and uncovers the presence of undetected premises, thus providing a useful tool for epidemiological studies in real time. The generation of genetic data is becoming routine in epidemiological investigations, but the development of analytical tools maximizing the value of these data remains a priority. Our method, while applied here in the context of FMDV, is general and with slight modification can be used in any situation where both spatiotemporal and genetic data are available

    Real Welfare Reform Requires Jobs: Lessons from a Progressive Welfare Agency

    Get PDF
    This article discusses evidence from a local progressive welfare agency that has, along with other achievements, created innovate work programs within the framework of Job Opportunities and Basic Skills (JOBS). We discuss the institutional and bureaucratic limits of what such agencies can accomplish and that there has been some room for innovation for agencies that are so inclined. We then focus on two work-related innovations within the local JOBS program that demonstrate that there are many welfare clients ready and able to work in useful jobs. We take the position that government job creation is necessary to fill the employment gap left by normal labor markets and to make welfare reform effective

    Plasticity in transmission strategies of the malaria parasite, Plasmodium chabaudi : environmental and genetic effects

    Get PDF
    Parasites may alter their behaviour to cope with changes in the within-host environment. In particular, investment in transmission may alter in response to the availability of parasite resources or host immune responses. However, experimental and theoretical studies have drawn conflicting conclusions regarding parasites' optimal (adaptive) responses to deterioration in habitat quality. We analyse data from acute infections with six genotypes of the rodent malaria species to quantify how investment in transmission (gametocytes) is influenced by the within-host environment. Using a minimum of modelling assumptions, we find that proportional investment in gametocytogenesis increases sharply with host anaemia and also increases at low parasite densities. Further, stronger dependence of investment on parasite density is associated with greater virulence of the parasite genotype. Our study provides a robust quantitative framework for studying parasites' responses to the host environment and whether these responses are adaptive, which is crucial for predicting the short-term and evolutionary impact of transmission-blocking treatments for parasitic diseases

    A fundamental test for stellar feedback recipes in galaxy simulations

    Get PDF
    Direct comparisons between galaxy simulations and observations that both reach scales < 100 pc are strong tools to investigate the cloud-scale physics of star formation and feedback in nearby galaxies. Here we carry out such a comparison for hydrodynamical simulations of a Milky Way-like galaxy, including stochastic star formation, HII region and supernova feedback, and chemical post-processing at 8 pc resolution. Our simulation shows excellent agreement with almost all kpc-scale and larger observables, including total star formation rates, radial profiles of CO, HI, and star formation through the galactic disc, mass ratios of the ISM components, both whole-galaxy and resolved Kennicutt-Schmidt relations, and giant molecular cloud properties. However, we find that our simulation does not reproduce the observed de-correlation between tracers of gas and star formation on < 100 pc scales, known as the star formation 'uncertainty principle', which indicates that observed clouds undergo rapid evolutionary lifecycles. We conclude that the discrepancy is driven by insufficiently-strong pre-supernova feedback in our simulation, which does not disperse the surrounding gas completely, leaving star formation tracer emission too strongly associated with molecular gas tracer emission, inconsistent with observations. This result implies that the cloud-scale de-correlation of gas and star formation is a fundamental test for feedback prescriptions in galaxy simulations, one that can fail even in simulations that reproduce all other macroscopic properties of star-forming galaxies.Comment: 13 pages, 10 figures, accepted for publication in MNRA

    Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data

    Get PDF
    There is a high prevalence of coronary artery disease (CAD) in patients with left bundle branch block (LBBB); however there are many other causes for this electrocardiographic abnormality. Non-invasive assessment of these patients remains difficult, and all commonly used modalities exhibit several drawbacks. This often leads to these patients undergoing invasive coronary angiography which may not have been necessary. In this review, we examine the uses and limitations of commonly performed non-invasive tests for diagnosis of CAD in patients with LBBB

    Transmission dynamics and prospects for the elimination of canine rabies

    Get PDF
    Rabies has been eliminated from domestic dog populations in Western Europe and North America, but continues to kill many thousands of people throughout Africa and Asia every year. A quantitative understanding of transmission dynamics in domestic dog populations provides critical information to assess whether global elimination of canine rabies is possible. We report extensive observations of individual rabid animals in Tanzania and generate a uniquely detailed analysis of transmission biology, which explains important epidemiological features, including the level of variation in epidemic trajectories. We found that the basic reproductive number for rabies, R&lt;sub&gt;0&lt;/sub&gt;, is very low in our study area in rural Africa (&#8764;1.2) and throughout its historic global range (&#60;2). This finding provides strong support for the feasibility of controlling endemic canine rabies by vaccination, even near wildlife areas with large wild carnivore populations. However, we show that rapid turnover of domestic dog populations has been a major obstacle to successful control in developing countries, thus regular pulse vaccinations will be required to maintain population-level immunity between campaigns. Nonetheless our analyses suggest that with sustained, international commitment, global elimination of rabies from domestic dog populations, the most dangerous vector to humans, is a realistic goal

    Nutrient homeostasis within the plant circadian network

    Get PDF
    Circadian clocks have evolved to enhance adaptive physiology in the predictable, fluctuating environment caused by the rotation of the planet. Nutrient acquisition is central to plant growth performance and the nutrient demands of a plant change according to the time of day. Therefore, major aspects of nutrient homeostasis, including carbon assimilation and mineral uptake, are under circadian control. It is also emerging that there is feedback of nutritional status to the circadian clock to integrate these processes. This review will highlight recent insights into the role of the circadian clock in regulating plant nutrition as well as discuss the role for nutrients in affecting circadian function

    Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus

    Get PDF
    Due to the poor-fidelity of the enzymes involved in RNA genome replication, foot-and-mouth disease (FMD) virus samples comprise of unique polymorphic populations. In this study, deep sequencing was utilised to characterise the diversity of FMD virus (FMDV) populations in 6 infected cattle present on a single farm during the series of outbreaks in the UK in 2007. A novel RT–PCR method was developed to amplify a 7.6 kb nucleotide fragment encompassing the polyprotein coding region of the FMDV genome. Illumina sequencing of each sample identified the fine polymorphic structures at each nucleotide position, from consensus level changes to variants present at a 0.24% frequency. These data were used to investigate population dynamics of FMDV at both herd and host levels, evaluate the impact of host on the viral swarm structure and to identify transmission links with viruses recovered from other farms in the same series of outbreaks. In 7 samples, from 6 different animals, a total of 5 consensus level variants were identified, in addition to 104 sub-consensus variants of which 22 were shared between 2 or more animals. Further analysis revealed differences in swarm structures from samples derived from the same animal suggesting the presence of distinct viral populations evolving independently at different lesion sites within the same infected animal
    • 

    corecore