789 research outputs found

    Another View of the Problem-Drinker

    Get PDF

    Effect of Flow-Acoustic Resonant Interactions on Aerodynamic Response of Transitional Airfoils

    Get PDF
    A high-accuracy numerical study is conducted to examine the impact of flow-acoustic resonant interactions on the aerodynamic response of symmetric and cambered airfoils in the realistic transitional flow regimes with Rec=140,000 and M=0.0465 as well as the low Reynolds number flow regime with Rec=10,000 and M=0.2. The symmetric NACA-0012 and the cambered SD7003 airfoils are investigated at various angles of attack that have been found previously to include both the tone and no-tone producing regimes, with specific focus on the aerodynamic lift response. Additional simulations are conducted with a low-intensity synthetic turbulence introduced upstream of the airfoils in order to trip the boundary layer on the airfoil surface and thus eliminate the acoustic feedback loop as the tone-generating mechanism. The current work focuses on comparing the lift, drag, and lift to drag ratio curves in the uniform vs. turbulent flow cases to determine the impact of the acoustic feedback loop on the airfoil aerodynamic performance for both realistic and low Reynolds number flow conditions

    Purulent Pericarditis

    Get PDF

    Alignment of optical system components using an ADM beam through a null assembly

    Get PDF
    A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam

    Ethyl cellulose-based thermoreversible organogel photoresist for sedimentation-free volumetric additive manufacturing

    Full text link
    Liquid photoresists are abundant in the field of light-based additive manufacturing (AM). However, printing unsupported directly into a vat of material in emerging volumetric AM technologies-typically a benefit due to fewer geometric constraints and less material waste-can be a limitation when printing low-viscosity liquid monomers and multimaterial constructs due to part drift or sedimentation. With ethyl cellulose (EC), a thermoplastic soluble in organic liquids, we formulate a simple three-component transparent thermoreversible gel photoresist with melting temperature of ~64 deg\degC. The physically crosslinked network of the gel leads to storage moduli in the range of 0.1-10 kPa and maximum yield stress of 2.7 kPa for a 10 wt%\% EC gel photoresist. Non-zero yield stress enables sedimentation-free tomographic volumetric patterning in low-viscosity monomer without additional hardware or modification of apparatus. Additionally, objects inserted into the print container can be suspended in the gel material which enables overprinting of multimaterial devices without anchors connecting the object to the printing container. Flexural strength is also improved by 100% compared to the neat monomer for a formulation with 7 wt%\% EC

    Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly

    Get PDF
    This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective instruments on nearly the same path. A fifth beamlet, acting as a differential reference, reflects off a ring mirror attached to the objective and null and returns to the ADM. The spacings between the ring mirror, objective, and null are known through manufacturing tolerances as well as through an in situ null wavefront alignment of the interferometer test beam with a reflective hologram located near the caustic of the null. Since total path length between the ring mirror and PM segments is highly deterministic, any ADM-measured departures from the predicted path length can be attributed to either spacing error or radius error in the PM. It is estimated that the path length measurement between the ring mirror and a PM segment is accurate to better than 100 m. The unique features of this invention include the differential distance measuring capability and its integration into an existing cryogenic and vacuum compatible interferometric optical test

    Convergence Conditions for Random Quantum Circuits

    Full text link
    Efficient methods for generating pseudo-randomly distributed unitary operators are needed for the practical application of Haar distributed random operators in quantum communication and noise estimation protocols. We develop a theoretical framework for analyzing pseudo-random ensembles generated through a random circuit composition. We prove that the measure over random circuits converges exponentially (with increasing circuit length) to the uniform (Haar) measure on the unitary group and describe how the rate of convergence may be calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title changed; v3: published version, minor changes, references update

    Man-made Fibres? The Split Personalities of Victorian Manliness

    Get PDF
    This essay investigates the textual traces of a split that was central to the Victorian conception of manliness: the contradiction of gentlemanliness which demanded both the capacity to commit violence and the requirement to be ‘civilized’. It suggests that there is a fault line running through the fabric of masculinity which can be seen in the texts which train boys to become men, which remember and reconstruct that training and which consider manliness in its mature forms. A man is a subject who acts; he is also subjected to forces which he does not control. In fiction, long and short, and in poetry, masculinity is repeatedly shown to be both contested and constructed – a man-made fibre, not a natural or god-given status. From Tennyson to Wilde, there is a tear in the cloth. Keywords: Victorian manliness and masculinity; gentlemanliness; Alfred Tennyson; Charles Dickens; Rudyard Kipling; Saki (H. H. Munro); Oscar Wilde; Robert Louis Stevenson

    Universal and Automated Monte Carlo Method Code for Uncertainty Propagation in Metrology Databases

    Get PDF
    A method of providing transformed target points for integrating a component into an assembly includes collecting a set of component target points, collecting a set of assembly target points, identifying target points common to the set of component target points and the set of assembly target points; performing a specified number of Monte Carlo transformations of selected ones of the common target points to yield a set of transformed target points and vectors and an associated uncertainty value for each transformed target point and vector, and using certain ones of the transformed target points for integrating the component into the assembly based on the associated uncertainty value for each of the transformed target points

    Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    Get PDF
    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a dispersive media, the effect of both phase and group indices have to be considered. Taking all these factors into account, a method was developed to measure targets through multiple regions of different materials and produce results that are absolute measurements of target position in three-dimensional space, rather than simply relative position. The environment in which the lidar measurements are taken must be broken down into separate regions of interest and each region solved for separately. In this case, there were three regions of interest: air, fused silica, and vacuum. The angular position of the target inside the chamber is solved using only phase index and phase velocity, while the ranging effects due to travel from air to glass to vacuum/air are solved with group index and group velocity. When all parameters are solved simultaneously, an absolute knowledge of the position of each target within an environmental chamber can be derived. Novel features of this innovation include measuring absolute position of targets through multiple dispersive and non-dispersive media, deconstruction of lidar raw data from a commercial off-the-shelf unit into reworkable parameters, and use of group velocities to reduce range data. Measurement of structures within a vacuum chamber or other harsh environment, such as a furnace, may now be measured as easily as if they were in an ambient laboratory. This analysis permits transformation of the raw data into absolute spatial units (e.g., mm). This technique has also been extended to laser tracker, theodolite, and cathetometer measurements through refractive media
    corecore