27 research outputs found

    NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47

    Get PDF
    Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus

    Protein folding and its catalysts in the cell

    No full text
    報告番号: 乙12182 ; 学位授与年月日: 1995-03-13 ; 学位の種別: 論文博士 ; 学位の種類: 博士(理学) ; 学位記番号: 第12182号 ; 研究科・専攻: 理学系研究

    細胞内における蛋白質の高次構造形成を促進する酵素に関する研究

    No full text
    University of Tokyo (東京大学

    Fast folding of Escherichia coli cyclophilin A: a hypothesis of a unique hydrophobic core with a phenylalanine cluster

    No full text
    Escherichia coli cyclophilin A, a 164 residue globular protein, shows fast and slow phases of refolding kinetics from the urea-induced unfolded state at pH 7.0. Given that the slow phases are independent of the denaturant concentration and may be rate-limited by cis/trans isomerizations of prolyl peptide bonds, the fast phase represents the true folding reaction. The extrapolation of the fast-phase rate constant to 0 M urea indicates that the folding reaction of cyclophilin A is extraordinarily fast and has about 700 s−1 of the rate constant. Interrupted refolding experiments showed that the protein molecules formed in the fast phase had already been fully folded to the native state. This finding overthrows the accepted view that the fast folding is observed only in small proteins of fewer than 100 amino acid residues. Examination of the X-ray structure of cyclophilin A has shown that this protein has only one unique hydrophobic core (phenylalanine cluster) formed by evolutionarily conserved phenylalanine residues, and suggests that this architecture of the molecule may be responsible for the fast folding behavior

    Effects of proline mutations on the folding of staphylococcal nuclease

    No full text
    Effects of proline isomerizations on the equilibrium unfolding and kinetic refolding of staphylococcal nuclease were studied by circular dichroism in the peptide region (225 nm) and fluorescence spectra of a tryptophan residue. For this purpose, four single mutants (P11A, P31A, P42A, and P56A) and four multiple mutants (P11A/P47T/P117G, P11A/P31A/P47T/P117G, P11A/P31A/P42A/P47T/P117G, and P11A/P31A/P42A/P47T/P56A/P117G) were constructed. These mutants, together with the single and double mutants for Pro47 and Pro117 constructed in our previous study, cover all six proline sites of the nuclease. The P11A, P31A, and P42A mutations did not change the stability of the protein remarkably, while the P56A mutation increased protein stability to a small extent by 0.5 kcal/mol. The refolding kinetics of the protein were, however, affected remarkably by three of the mutations, namely, P11A, P31A, and P56A. Most notably, the amplitude of the slow phase of the triphasic refolding kinetics of the nuclease observed by stopped-flow circular dichroism decreased by increasing the number of the proline mutations; the slow phase disappeared completely in the proline-free mutant (P11A/P31A/P42A/P47T/P56A/P117G). The kinetic refolding reactions of the wild-type protein assessed in the presence of Escherichia coli cyclophilin A showed that the slow phase was accelerated by cyclophilin, indicating that the slow phase was rate-limited by cis−trans isomerization of the proline residues. Although the fast and middle phases of the refolding kinetics were not affected by cyclophilin, the amplitude of the middle phase decreased when the number of the proline mutations increased; the percent amplitudes for the wild-type protein and the proline-free mutants were 43 and 13%, respectively. In addition to these three phases detected with stopped-flow circular dichroism, a very fast phase of refolding was observed with stopped-flow fluorescence, which had a shorter dead time (3.6 ms) than the stopped-flow circular dichroism. The following conclusions were drawn. (1) The effects of the P11A, P31A, and P56A mutations on the refolding kinetics indicate that the isomerizations of the three proline residues are rate-limiting, suggesting that the structures around these residues (Pro11, Pro31, and Pro56) may be organized at an early stage of refolding. (2) The fast phase corresponds to the refolding of the native proline isomer, and the middle phase whose amplitude has decreased when the number of proline mutations was increased may correspond to the slow refolding of non-native proline isomers. The occurrence of the fast- and slow-refolding reactions together with the slow phase rate-limited by the proline isomerization suggests that there are parallel folding pathways for the native and non-native proline isomers. (3) The middle phase did not completely disappear in the proline-free mutant. This suggests that the slow-folding isomer is produced not only by the proline isomerizations but also by another conformational event that is not related to the prolines. (4) The very fast phase detected with the fluorescent measurements suggests that there is an intermediate at a very early stage of kinetic refolding
    corecore