418 research outputs found

    Surface and Image-Potential States on the MgB_2(0001) Surfaces

    Get PDF
    We present a self-consistent pseudopotential calculation of surface and image-potential states on MgB2(0001)MgB_2(0001) for both BB-terminated (BtB-t) and MgMg-terminated (MgtMg-t) surfaces. We find a variety of very clear surface and subsurface states as well as resonance image-potential states n=1,2 on both surfaces. The surface layer DOS at EFE_F is increased by 55% at BtB-t and by 90% at the MgtMg-t surface compared to DOS in the corresponding bulk layers.Comment: 3 pages, 6 figure

    Dynamic input demand functions and resource adjustment for US agriculture: state evidence

    Get PDF
    The paper presents an econometric model of dynamic agricultural input demand functions that include research based technical change and autoregressive disturbances and fits the model to annual data for a set of state aggregates pooled over 1950–1982. The methodological approach is one of developing a theoretical foundation for a dynamic input demand system and accepting state aggreage behavior as approximated by nonlinear adjustment costs and long-term profit maximization. Although other studies have largely ignored autocorrelation in dynamic input demand systems, the results show shorter adjustment lags with autocorrelation than without. Dynamic input demand own-price elasticities for the six input groups are inelastic, and the demand functions possess significant cross-price and research effects

    Dimensions of global population projections: what do we know about future population trends and structures?

    Get PDF
    The total size of the world population is likely to increase from its current 7 billion to 8–10 billion by 2050. This uncertainty is because of unknown future fertility and mortality trends in different parts of the world. But the young age structure of the population and the fact that in much of Africa and Western Asia, fertility is still very high makes an increase by at least one more billion almost certain. Virtually, all the increase will happen in the developing world. For the second half of the century, population stabilization and the onset of a decline are likely. In addition to the future size of the population, its distribution by age, sex, level of educational attainment and place of residence are of specific importance for studying future food security. The paper provides a detailed discussion of different relevant dimensions in population projections and an evaluation of the methods and assumptions used in current global population projections and in particular those produced by the United Nations and by IIASA

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    Spiral spin-liquid and the emergence of a vortex-like state in MnSc2_2S4_4

    Full text link
    Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2_2S4_4 by directly observing the 'spiral surface' - a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the effectiveness of the J1J_1-J2J_2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2_2S4_4, and also demonstrate a new way to realize a magnetic vortex lattice.Comment: 10 pages, 11 figure

    Computation of eigenmodes on a compact hyperbolic 3-space

    Full text link
    Measurements of cosmic microwave background (CMB) anisotropy are ideal experiments for discovering the non-trivial global topology of the universe. To evaluate the CMB anisotropy in multiply-connected compact cosmological models, one needs to compute the eigenmodes of the Laplace-Beltrami operator. Using the direct boundary element method, we numerically obtain the low-lying eigenmodes on a compact hyperbolic 3-space called the Thurston manifold which is the second smallest in the known compact hyperbolic 3-manifolds. The computed eigenmodes are expanded in terms of eigenmodes on the unit three-dimensional pseudosphere. We numerically find that the expansion coefficients behave as Gaussian pseudo-random numbers for low-lying eigenmodes. The observed gaussianity in the CMB fluctuations can partially be attributed to the Gaussian pseudo-randomness of the expansion coefficients assuming that the Gaussian pseudo-randomness is the universal property of the compact hyperbolic spaces.Comment: 40 pages, 8 EPS figures; error estimation is included; accepted Classical and Quantum Gravit

    A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models

    Get PDF
    BACKGROUND: This study evaluates changes in peri-articular bone in two canine models for osteoarthritis: the groove model and the anterior cruciate ligament transection (ACLT) model. METHODS: Evaluation was performed at 10 and 20 weeks post-surgery and in addition a 3-weeks time point was studied for the groove model. Cartilage was analysed, and architecture of the subchondral plate and trabecular bone of epiphyses was quantified using micro-CT. RESULTS: At 10 and 20 weeks cartilage histology and biochemistry demonstrated characteristic features of osteoarthritis in both models (very mild changes at 3 weeks). The groove model presented osteophytes only at 20 weeks, whereas the ACLT model showed osteophytes already at 10 weeks. Trabecular bone changes in the groove model were small and not consistent. This contrasts the ACLT model in which bone volume fraction was clearly reduced at 10 and 20 weeks (15-20%). However, changes in metaphyseal bone indicate unloading in the ACLT model, not in the groove model. For both models the subchondral plate thickness was strongly reduced (25-40%) and plate porosity was strongly increased (25-85%) at all time points studied. CONCLUSION: These findings show differential regulation of subchondral trabecular bone in the groove and ACLT model, with mild changes in the groove model and more severe changes in the ACLT model. In the ACLT model, part of these changes may be explained by unloading of the treated leg. In contrast, subchondral plate thinning and increased porosity were very consistent in both models, independent of loading conditions, indicating that this thinning is an early response in the osteoarthritis process
    corecore