113 research outputs found

    Planet formation in intermediate-separation binary systems

    Get PDF
    ABSTRACT We report the first characterization of the individual discs in the intermediate-separation binary systems KK Oph and HD 144668 at millimetre wavelengths. In both systems, the circumprimary and the circumsecondary discs are detected in the millimetre continuum emission, but not in 13CO nor C18O lines. Even though the disc structure is only marginally resolved, we find indications of large-scale asymmetries in the outer regions of the primary discs, most likely due to perturbation by the companion. The derived dust masses are firmly above debris disc level for all stars. The primaries have about three times more dust in their discs than the secondaries. In the case of HD 144668, the opacity spectral index of the primary and secondary differ by a large margin of 0.69, which may be a consequence of the secondary disc being more compact. Upper limits on the gas masses imply less than 0.1 Mjup in any of these discs, meaning that giant planets can no longer form in them. Considering that there have been no massive gas discs identified to date in intermediate-separation binaries (i.e. binaries at a few hundred au separation), this opens space for speculation whether their binarity causes the removal of gas, with tidal interaction truncating the discs and hence shortening the accretion time-scale. More systematic studies in this respect are sorely needed.</jats:p

    The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast

    Get PDF
    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al

    First detection of a disk free of volatile elements around a young A-type star: A possible sign of collisions between rocky planets

    Get PDF
    Aims. We present the first detailed analysis of the astrophysical parameters of the poorly studied Sco-Cen member HD 152384 and its circumstellar environment. Methods. We analyse newly obtained optical-near-IR X-shooter spectra, as well as archival TESS data, of HD 152384. In addition, we use literature photometric data to construct a detailed spectral energy distribution (SED) of the star. Results. The photospheric absorption lines in the spectrum of HD 152384 are characteristic of an A0 V star, for which we derive a stellar mass of 2.1 ± 0.1 M⊙ and a stellar age > 4.5 Myr. Superimposed on the photospheric absorption, the optical spectrum also displays double-peaked emission lines of Ca II, Fe I, Mg I, and Si I, typical of circumstellar disks. Notably, all hydrogen and helium lines appear strictly in absorption. A toy model shows that the observed emission line profiles can be reproduced by emission from a compact (radius < 0.3 au) disk seen at an inclination of ∼24°. Further evidence for the presence of circumstellar material comes from the detection of a moderate IR excess in the SED, similar to those found in extreme debris disk systems. Conclusions. We conclude that HD 152384 is surrounded by a tenuous circumstellar disk that, although rich in refractory elements, is highly depleted of volatile elements. To the best of our knowledge, such a disk is unique among young stars. However, it is reminiscent of the disks seen in some white dwarfs, which have been attributed to the disruption of rocky planets. We suggest that the disk around HD 152384 may have a similar origin and may be due to collisions in a newly formed planetary system

    Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets

    Get PDF
    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative

    Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary

    Get PDF
    Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO2 compared with biomes with similar fire regimes in other continents

    Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC). Genetic studies in zebrafish and mice have established that the Hedgehog (Hh)-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE), which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA) skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1) for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study <it>chameleon </it>mutants, lacking a functional <it>disp1</it>(<it>con/disp1</it>).</p> <p>Results</p> <p><it>con/disp1 </it>mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in <it>con/disp1 </it>mutants, however <it>disp1 </it>is necessary for post-migratory CNCC patterning and differentiation. We show that <it>disp1 </it>is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, <it>sox9a </it>and <it>dlx2a</it>, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to inhibit Hh-signaling at different developmental stages, show that Hh-signaling is required during gastrulation for normal patterning of CNCC in the first PA, and then during the late pharyngula stage, to promote CNCC chondrogenesis within the posterior arches. Further, loss of <it>disp1 </it>disrupted normal expression of <it>bapx1 </it>and <it>gdf5</it>, markers of jaw joint patterning, thus resulting in jaw joint defects in <it>con/disp1 </it>mutant animals.</p> <p>Conclusion</p> <p>This study reveals novel requirements for Hh-signaling in the zebrafish PA skeleton and highlights the functional diversity and differential sensitivity of craniofacial tissues to Hh-signaling throughout the face, a finding that may help to explain the spectrum of human facial phenotypes characteristic of HPE.</p

    The Genetic Association Between ADHD Symptoms and Reading Difficulties: The Role of Inattentiveness and IQ

    Get PDF
    Previous studies have documented the primarily genetic aetiology for the stronger phenotypic covariance between reading disability and ADHD inattention symptoms, compared to hyperactivity-impulsivity symptoms. In this study, we examined to what extent this covariation could be attributed to “generalist genes” shared with general cognitive ability or to “specialist” genes which may specifically underlie processes linking inattention symptoms and reading difficulties. We used multivariate structural equation modeling on IQ, parent and teacher ADHD ratings and parent ratings on reading difficulties from a general population sample of 1312 twins aged 7.9–10.9 years. The covariance between reading difficulties and ADHD inattention symptoms was largely driven by genetic (45%) and child-specific environment (21%) factors not shared with IQ and hyperactivity-impulsivity; only 11% of the covariance was due to genetic effects common with IQ. Aetiological influences shared among all phenotypes explained 47% of the variance in reading difficulties. The current study, using a general population sample, extends previous findings by showing, first, that the shared genetic variability between reading difficulties and ADHD inattention symptoms is largely independent from genes contributing to general cognitive ability and, second, that child-specific environment factors, independent from IQ, also contribute to the covariation between reading difficulties and inattention symptoms
    corecore