4,941 research outputs found
A model for the orientational ordering of the plant microtubule cortical array
The plant microtubule cortical array is a striking feature of all growing
plant cells. It consists of a more or less homogeneously distributed array of
highly aligned microtubules connected to the inner side of the plasma membrane
and oriented transversely to the cell growth axis. Here we formulate a
continuum model to describe the origin of orientational order in such confined
arrays of dynamical microtubules. The model is based on recent experimental
observations that show that a growing cortical microtubule can interact through
angle dependent collisions with pre-existing microtubules that can lead either
to co-alignment of the growth, retraction through catastrophe induction or
crossing over the encountered microtubule. We identify a single control
parameter, which is fully determined by the nucleation rate and intrinsic
dynamics of individual microtubules. We solve the model analytically in the
stationary isotropic phase, discuss the limits of stability of this isotropic
phase, and explicitly solve for the ordered stationary states in a simplified
version of the model.Comment: 15 pages, 5 figure
Braneworld Cosmology in (Anti)--de Sitter Einstein--Gauss--Bonnet--Maxwell Gravity
Braneworld cosmology for a domain wall embedded in the charged (Anti)-de
Sitter-Schwarzschildblack hole of the five--dimensional
Einstein-Gauss-Bonnet-Maxwell theory is considered. The effective Friedmann
equation for the brane is derived by introducing the necessary surface
counterterms required for a well-defined variational principlein the
Gauss--Bonnet theory and for the finiteness of the bulk space. The asymptotic
dynamics of the brane cosmology is determined and it is found that solutions
with vanishingly small spatial volume are unphysical. The finiteness of the
bulk action is related to the vanishing of the effective cosmological constant
on the brane. An analogy between the Friedmann equation and a generalized
Cardy--Verlinde formula is drawn.Comment: LaTex file 28 pages, typos corrected, one reference is adde
Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics
A mathematical model is developed to analyse electro-kinetic effects on unsteady peristaltic transport of blood in cylindrical vessels of finite length. The Newtonian viscous model is adopted. The analysis is restricted under Debye-HĂŒckel linearization (i.e. wall zeta potential less than or equal to 25mV is sufficiently small). The transformed, non-dimensional conservation equations are derived via lubrication theory and long wavelength and the resulting linearized boundary value problem is solved exactly. The case of a thin electric double layer (i.e. where only slip electro-osmotic velocity considered) is retrieved as a particular case of the present model. The response in pumping characteristics (axial velocity, pressure gradient or difference, volumetric flow rate, local wall shear stress) to the influence of electro-osmotic effect (inverse Debye length) and Helmholtz-Smoluchowski velocity is elaborated in detail. Visualization of trapping phenomenon is also included and the bolus dynamics evolution with electro-kinetic effects examined. A comparative study of train wave propagation and single wave propagation is presented under the effects of thickness of EDL and external electric field. The study is relevant to electrophoresis in haemotology, electrohydrodynamic therapy and biomimetic electro-osmotic pumps
The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels
Evolution in Quantum Causal Histories
We provide a precise definition and analysis of quantum causal histories
(QCH). A QCH consists of a discrete, locally finite, causal pre-spacetime with
matrix algebras encoding the quantum structure at each event. The evolution of
quantum states and observables is described by completely positive maps between
the algebras at causally related events. We show that this local description of
evolution is sufficient and that unitary evolution can be recovered wherever it
should actually be expected. This formalism may describe a quantum cosmology
without an assumption of global hyperbolicity; it is thus more general than the
Wheeler-DeWitt approach. The structure of a QCH is also closely related to
quantum information theory and algebraic quantum field theory on a causal set.Comment: 20 pages. 8 figures. (v3: minor corrections, additional references
[2,3]) to appear in CQ
Achieving biodiversity net gain by addressing governance gaps underpinning ecological compensation policies
Biodiversity compensation policies have emerged around the world to address the ecological harms of infrastructure expansion, but historically compliance is weak. The Westminster government is introducing a requirement that new infrastructure developments in England demonstrate they achieve a biodiversity net gain (BNG). We sought to determine the magnitude of the effects of governance gaps and regulator capacity constraints on the policy's potential biodiversity impacts. We collated BNG information from all new major developments across six earlyâadopter councils from 2020 to 2022. We quantified the proportion of the biodiversity outcomes promised under BNG at risk of noncompliance, explored the variation in strategies used to meet developersâ biodiversity liabilities, and quantified the occurrence of simple errors in the biodiversity metric calculations. For large developments and energy infrastructure, biodiversity liabilities frequently met within the projectsâ development footprint. For small developments, the purchase of offsets was most common. We estimated that 27% of all biodiversity units fell into governance gaps that exposed them to a high risk of noncompliance because they were associated with betterâcondition habitats delivered onâsite that were unlikely to be monitored or enforced. More robust governance mechanisms (e.g., practical mechanisms for monitoring and enforcement) would help ensure the delivery of this biodiversity onâsite. Alternatively, more biodiversity gains could be delivered through offâsite biodiversity offsetting. For the latter case, we estimated that the demand for offsets could rise by a factor of 4; this would substantially increase the financial contributions from developers for conservation activities on private land. Twentyâone percent of development applications contained a simple recurring error in their BNG calculations. Oneâhalf of these applications were approved by councils, which may indicate underâresourcing in council development assessments. Our findings demonstrate that resourcing and governance shortfalls risk undermining the policy's effectiveness
Evolution of density perturbations in double exponential quintessence models
In this work we investigate the evolution of matter density perturbations for
quintessence models with a self-interaction potential that is a combination of
exponentials. One of the models is based on the Einstein theory of gravity,
while the other is based on the Brans-Dicke scalar tensor theory. We constrain
the parameter space of the models using the determinations for the growth rate
of perturbations derived from data of the 2-degree Field Galaxy Redshift
Survey.Comment: 5 pages, 3 eps figure
The study of metaphor as part of Critical Discourse Analysis
This article discusses how the study of metaphoric and more generally, figurative language use contributes to critical discourse analysis (CDA). It shows how cognitive linguistsâ recognition of metaphor as a fundamental means of concept- and argument-building can add to CDA's account of meaning constitution in the social context. It then discusses discrepancies between the early model of conceptual metaphor theory and empirical data and argues that discursive-pragmatic factors as well as sociolinguistic variation have to be taken into account in order to make cognitive analyses more empirically and socially relevant. In conclusion, we sketch a modified cognitive approach informed by Relevance Theory within CDA
Theory of Circle Maps and the Problem of One-Dimensional Optical Resonator with a Periodically Moving Wall
We consider the electromagnetic field in a cavity with a periodically
oscillating perfectly reflecting boundary and show that the mathematical theory
of circle maps leads to several physical predictions. Notably, well-known
results in the theory of circle maps (which we review briefly) imply that there
are intervals of parameters where the waves in the cavity get concentrated in
wave packets whose energy grows exponentially. Even if these intervals are
dense for typical motions of the reflecting boundary, in the complement there
is a positive measure set of parameters where the energy remains bounded.Comment: 34 pages LaTeX (revtex) with eps figures, PACS: 02.30.Jr, 42.15.-i,
42.60.Da, 42.65.Y
- âŠ