40 research outputs found

    Impact of embedding on predictability of failure-recovery dynamics in networks

    Full text link
    Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network's components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component.We identify a metastable domain in the global network phase diagram spanned by the model's control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. The loss of predictability due to these effects depend on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand predictability and controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in the global network.Comment: 22 pages, 20 figure

    Comment on "Scaling of atmosphere and ocean temperature correlations in observations and climate models"

    Full text link
    In a recent letter [K. Fraedrich and R. Blender, Phys. Rev. Lett. 90, 108501 (2003)], Fraedrich and Blender studied the scaling of atmosphere and ocean temperature. They analyzed the fluctuation functions F(s) ~ s^alpha of monthly temperature records (mostly from grid data) by using the detrended fluctuation analysis (DFA2) and claim that the scaling exponent alpha over the inner continents is equal to 0.5, being characteristic of uncorrelated random sequences. Here we show that this statement is (i) not supported by their own analysis and (ii) disagrees with the analysis of the daily observational data from which the grid monthly data have been derived. We conclude that also for the inner continents, the exponent is between 0.6 and 0.7, similar as for the coastline-stations.Comment: 1 page with 2 figure

    On the universality of distribution of ranked cluster masses at critical percolation

    Full text link
    The distribution of masses of clusters smaller than the infinite cluster is evaluated at the percolation threshold. The clusters are ranked according to their masses and the distribution P(M/LD,r)P(M/L^D,r) of the scaled masses M for any rank r shows a universal behaviour for different lattice sizes L (D is the fractal dimension). For different ranks however, there is a universal distribution function only in the large rank limit, i.e., P(M/LD,r)ryζg(Mry/LD)P(M/L^D,r)r^{-y\zeta } \sim g(Mr^y/L^D) (y and ζ\zeta are defined in the text), where the universal scaling function g is found to be Gaussian in nature.Comment: 4 pages, to appear in J. Phys.

    Breathing during REM and non-REM sleep: correlated versus uncorrelated behaviour

    Get PDF
    Abstract Healthy sleep can be characterized by several stages: deep sleep, light sleep, and REM sleep. Here we show that these sleep stages lead to di erent autonomic regulation of breathing. Using the detrended uctuation analysis up to the fourth order we ÿnd that breath-to-breath intervals and breath volumes separated by several breaths are long-range correlated during the REM stages and during wake states. In contrast, in the non-REM stages (deep sleep and light sleep), long-range correlations are absent. This behaviour is very similar to the correlation behaviour of the heart rate during the night and may be related to the phase synchronization between heartbeat and breathing found recently. We speculate that the di erences are caused by di erent cortically in uenced control of the autonomic nervous system

    Detecting Long-range Correlations with Detrended Fluctuation Analysis

    Full text link
    We examine the Detrended Fluctuation Analysis (DFA), which is a well-established method for the detection of long-range correlations in time series. We show that deviations from scaling that appear at small time scales become stronger in higher orders of DFA, and suggest a modified DFA method to remove them. The improvement is necessary especially for short records that are affected by non-stationarities. Furthermore, we describe how crossovers in the correlation behavior can be detected reliably and determined quantitatively and show how several types of trends in the data affect the different orders of DFA.Comment: 10 pages, including 8 figure

    Multifractal detrended fluctuation analysis of nonstationary time series

    Get PDF
    We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series to those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima (WTMM) method, and show that the results are equivalent.Comment: 14 pages (RevTex) with 10 figures (eps

    Diffusion on random site percolation clusters. Theory and NMR microscopy experiments with model objects

    Full text link
    Quasi two-dimensional random site percolation model objects were fabricate based on computer generated templates. Samples consisting of two compartments, a reservoir of H2_2O gel attached to a percolation model object which was initially filled with D2_2O, were examined with NMR (nuclear magnetic resonance) microscopy for rendering proton spin density maps. The propagating proton/deuteron inter-diffusion profiles were recorded and evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a percolation cluster. The fractal dimension of the random walk, dwd_w, evaluated from the diffusion measurements on the one hand and the fractal dimension, dfd_f, deduced from the spin density map of the percolation object on the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion equation was solved numerically for the corresponding initial and boundary conditions for comparison. The anomalous diffusion constant was evaluated and is compared to the Brownian case. Some ad hoc correction of the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the fractional diffusion equation could experimentally be verified for the first time.Comment: REVTeX, 12 figures in GIF forma

    Characterization of Sleep Stages by Correlations of Heartbeat Increments

    Full text link
    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and REM sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the signs series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte
    corecore