research

On the universality of distribution of ranked cluster masses at critical percolation

Abstract

The distribution of masses of clusters smaller than the infinite cluster is evaluated at the percolation threshold. The clusters are ranked according to their masses and the distribution P(M/LD,r)P(M/L^D,r) of the scaled masses M for any rank r shows a universal behaviour for different lattice sizes L (D is the fractal dimension). For different ranks however, there is a universal distribution function only in the large rank limit, i.e., P(M/LD,r)ryζg(Mry/LD)P(M/L^D,r)r^{-y\zeta } \sim g(Mr^y/L^D) (y and ζ\zeta are defined in the text), where the universal scaling function g is found to be Gaussian in nature.Comment: 4 pages, to appear in J. Phys.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019