72 research outputs found

    An Extension of Heron's Formula to Tetrahedra, and the Projective Nature of Its Zeros

    Full text link
    A natural extension of Heron's 2000 year old formula for the area of a triangle to the volume of a tetrahedron is presented. This gives the fourth power of the volume as a polynomial in six simple rational functions of the areas of its four faces and three medial parallelograms, which will be referred to herein as "interior faces." Geometrically, these rational functions are the areas of the triangles into which the exterior faces are divided by the points at which the tetrahedron's in-sphere touches those faces. This leads to a conjecture as to how the formula extends to nn-dimensional simplices for all n>3n > 3. Remarkably, for n=3n = 3 the zeros of the polynomial constitute a five-dimensional semi-algebraic variety consisting almost entirely of collinear tetrahedra with vertices separated by infinite distances, but with generically well-defined distance ratios. These unconventional Euclidean configurations can be identified with a quotient of the Klein quadric by an action of a group of reflections isomorphic to Z24\mathbb Z_2^4, wherein four-point configurations in the affine plane constitute a distinguished three-dimensional subset. The paper closes by noting that the algebraic structure of the zeros in the affine plane naturally defines the associated four-element, rank 33 chirotope, aka affine oriented matroid.Comment: 51 pages, 6 sections, 5 appendices, 7 figures, 2 tables, 81 references; v7 clarifies the definitions made in the text leading up to Theorem 5.4, along with the usual miscellaneous minor corrections and improvement

    A Bloch-Sphere-Type Model for Two Qubits in the Geometric Algebra of a 6-D Euclidean Vector Space

    Full text link
    Geometric algebra is a mathematical structure that is inherent in any metric vector space, and defined by the requirement that the metric tensor is given by the scalar part of the product of vectors. It provides a natural framework in which to represent the classical groups as subgroups of rotation groups, and similarly their Lie algebras. In this article we show how the geometric algebra of a six-dimensional real Euclidean vector space naturally allows one to construct the special unitary group on a two-qubit (quantum bit) Hilbert space, in a fashion similar to that used in the well-established Bloch sphere model for a single qubit. This is then used to illustrate the Cartan decompositions and subalgebras of the four-dimensional special unitary group, which have recently been used by J. Zhang, J. Vala, S. Sastry and K. B. Whaley [Phys. Rev. A 67, 042313, 2003] to study the entangling capabilities of two-qubit unitaries.Comment: 14 pages, 2 figures, in press (Proceedings of SPIE Conference on Defense & Security

    Procedures for Converting among Lindblad, Kraus and Matrix Representations of Quantum Dynamical Semigroups

    Full text link
    Given an quantum dynamical semigroup expressed as an exponential superoperator acting on a space of N-dimensional density operators, eigenvalue methods are presented by which canonical Kraus and Lindblad operator sum representations can be computed. These methods provide a mathematical basis on which to develop novel algorithms for quantum process tomography, the statistical estimation of superoperators and their generators, from a wide variety of experimental data. Theoretical arguments and numerical simulations are presented which imply that these algorithms will be quite robust in the presence of random errors in the data.Comment: RevTeX4, 31 pages, no figures; v4 adds new introduction and a numerical example illustrating the application of these results to Quantum Process Tomograph

    Reflection Symmetries for Multiqubit Density Operators

    Full text link
    For multiqubit density operators in a suitable tensorial basis, we show that a number of nonunitary operations used in the detection and synthesis of entanglement are classifiable as reflection symmetries, i.e., orientation changing rotations. While one-qubit reflections correspond to antiunitary symmetries, as is known for example from the partial transposition criterion, reflections on the joint density of two or more qubits are not accounted for by the Wigner Theorem and are well-posed only for sufficiently mixed states. One example of such nonlocal reflections is the unconditional NOT operation on a multiparty density, i.e., an operation yelding another density and such that the sum of the two is the identity operator. This nonphysical operation is admissible only for sufficiently mixed states.Comment: 9 page

    Expressing the operations of quantum computing in multiparticle geometric algebra

    Get PDF
    We show how the basic operations of quantum computing can be expressed and manipulated in a clear and concise fashion using a multiparticle version of geometric (aka Clifford) algebra. This algebra encompasses the product operator formalism of NMR spectroscopy, and hence its notation leads directly to implementations of these operations via NMR pulse sequences.Comment: RevTeX, 10 pages, no figures; Physics Letters A, in pres

    A new method for building protein conformations from sequence alignments with homologues of known structure

    Full text link
    We describe a largely automatic procedure for building protein structures from sequence alignments with homologues of known structure. This procedure uses simple rules by which multiple sequence alignments can be translated into distance and chirality constraints, which are then used as input for distance geometry calculations. By this means one obtains an ensemble of conformations for the unknown structure that are compatible with the rules employed, and the differences among these conformations provide an indication of the reliability of the structure prediction. The overall approach is demonstrated here by applying it to several Kazal-type trypsin inhibitors, for which experimentally determined structures are available. On the basis of our experience with these test problems, we have further predicted the conformation of the human pancreatic secretory trypsin inhibitor, for which no experimentally determined structure is presently available.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29506/1/0000593.pd

    Quantum Process Tomography of the Quantum Fourier Transform

    Full text link
    The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented, and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently-developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive - although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors during the quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cummulative effect of small errors in the single qubit gates.Comment: 26 pages, 17 figures, four tables; in press, Journal of Chemical Physic
    • …
    corecore