27 research outputs found

    Postnatal lung and metabolic development in two marsupial and four eutherian species

    No full text
    Two marsupial species (Monodelphis domestica, Macropus eugenii) and four eutherian species (Mesocricetus auratus, Suncus murinus, Tupaia belangeri and Cavia aperea) were examined to compare and contrast the timing of lung and metabolic development during the postnatal maturation of the mammalian respiratory apparatus. Using light, scanning and transmission electron microscopy, the lung structural changes were correlated with indirect calorimetry to track the metabolic development. Marsupial and eutherian species followed the same pattern of mammalian lung development, but differed in the developmental pace. In the two newborn marsupial species, the lung parenchyma was at the early terminal sac stage, with large terminal air sacs, and the lung developed slowly. In contrast, the newborn eutherian species had more advanced lungs at the late terminal sac stage in altricial species (M. auratus, S. murinus) and at the alveolar stage in precocial species (T. belangeri, C. aperea). Postnatal lung development proceeded rapidly in eutherian species. The marsupial species had a low metabolic rate at birth and achieved adult metabolism late in postnatal development. In contrast, newborn eutherian species had high metabolic rates and reached adult metabolism during the first week of life. The time course of the metabolic development is thus tightly linked to the structural differentiation of the lungs and the timing of postnatal lung development. These differences in the neonatal lung structure and the timing of postnatal lung maturation between marsupial and eutherian species reflect their differing reproductive strategies

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access

    Health states for schizophrenia and bipolar disorder within the Global Burden of Disease 2010 Study

    Get PDF
    <p>Abstract</p> <p>A comprehensive revision of the Global Burden of Disease (GBD) study is expected to be completed in 2012. This study utilizes a broad range of improved methods for assessing burden, including closer attention to empirically derived estimates of disability. The aim of this paper is to describe how GBD health states were derived for schizophrenia and bipolar disorder. These will be used in deriving health state-specific disability estimates. A literature review was first conducted to settle on a parsimonious set of health states for schizophrenia and bipolar disorder. A second review was conducted to investigate the proportion of schizophrenia and bipolar disorder cases experiencing these health states. These were pooled using a quality-effects model to estimate the overall proportion of cases in each state. The two schizophrenia health states were acute (predominantly positive symptoms) and residual (predominantly negative symptoms). The three bipolar disorder health states were depressive, manic, and residual. Based on estimates from six studies, 63% (38%-82%) of schizophrenia cases were in an acute state and 37% (18%-62%) were in a residual state. Another six studies were identified from which 23% (10%-39%) of bipolar disorder cases were in a manic state, 27% (11%-47%) were in a depressive state, and 50% (30%-70%) were in a residual state. This literature review revealed salient gaps in the literature that need to be addressed in future research. The pooled estimates are indicative only and more data are required to generate more definitive estimates. That said, rather than deriving burden estimates that fail to capture the changes in disability within schizophrenia and bipolar disorder, the derived proportions and their wide uncertainty intervals will be used in deriving disability estimates.</p
    corecore