72 research outputs found

    Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and b1-integrin activation

    Get PDF
    Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain incompletely understood. We show here that exposure of expansively growing human WM852 melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular mechanisms, we established LEC co-cultures with different melanoma cells originating from primary tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and β1-integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident β1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell phenotype

    A Strategy For Identifying Putative Causes Of Gene Expression Variation In Human Cancer

    Get PDF
    There is often a need to predict the impact of alterations in one variable on another variable. This is especially the case in cancer research, where much effort has been made to carry out large-scale gene expression screening by microarray techniques. However, the causes of this variability from one cancer to another and from one gene to another often remain unknown. In this study we present a systematic procedure for finding genes whose expression is altered by an intrinsic or extrinsic explanatory phenomenon. The procedure has three stages: preprocessing, data integration and statistical analysis. We tested and verified the utility of this approach in a study, where expression and copy number of 13,824 genes were determined in 14 breast cancer samples. The expression of 270 genes could be explained by the variability of gene copy number. These genes may represent an important set of primary, genetically "damaged" genes that drive cancer progression

    Demography and Environment in Grassland Settlement: Using Linked Longitudinal and Cross-Sectional Data to Explore Household and Agricultural Systems

    Full text link
    The Demography and Environment in Grassland Settlement project (DEGS) is a study of the relationship between population and environment in Kansas during its settlement and conversion from grassland to grain cultivation and rangeland. The research team involved in this project had as its goal to bring together data about farms and farm families in order to understand the core transformations in land use and family dynamics that took place during the process of settling and developing an agricultural landscape. For reasons we will explain later, the state of Kansas – located near the centre of the U.S. in a grassland ecosystem – is ideally suited for this study by virtue of its location, history and the documents that exist about it. In order to capture the environmental variability of Kansas, we are assembling a linked database of farm and family census records for twenty-five townships scattered across the state. This paper is about the process of choosing that sample, about the data we have accumulated and about the process we are undertaking to link records about families and farms through time and to attempt to find their locations in space.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60442/1/sylvester_etal.demography and environment.pd

    Predictive gene lists for breast cancer prognosis: A topographic visualisation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small selected subsets of genes from very large potential candidates as available in DNA microarray experiments is now widely acknowledged <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Many of these studies have focused on constructing discriminative semi-parametric models and as such are also subject to the issue of random correlations of sparse model selection in high dimensional spaces. In this work we outline a different approach based around an unsupervised patient-specific nonlinear topographic projection in predictive gene lists.</p> <p>Methods</p> <p>We construct nonlinear topographic projection maps based on inter-patient gene-list relative dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of 70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each patient using the resulting projections from those visualisation techniques and investigate whether <it>a-posteriori </it>two prognosis groups are separable on the evidence of the gene lists.</p> <p>A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list using the above methods. Generalisation ability is investigated by using the mapping capability of Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset.</p> <p>Results</p> <p>The results indicate that small subsets of patient-specific PGLs have insufficient prognostic dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative projections across different PGLs provide similar results.</p> <p>Conclusion</p> <p>The random correlation effect to an arbitrary outcome induced by small subset selection from very high dimensional interrelated gene expression profiles leads to an outcome with associated uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative classifiers.</p> <p>However a patient's gene expression profile could possibly be used in treatment planning, based on knowledge of other patients' responses.</p> <p>We conclude that many of the patients involved in such medical studies are <it>intrinsically unclassifiable </it>on the basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.</p

    Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer

    Get PDF
    Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV. Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular. © 2018 The Authors. Published under the terms of the CC BY 4.0 licensePeer reviewe

    Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme

    Get PDF
    Background: Coordinated efforts to collect large-scale data sets provide a basis for systems level understanding of complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and medical benefits, advanced computational methods for data analysis, integration and visualization are needed.Methods: We introduce a novel data integration framework, Anduril, for translating fragmented large-scale data into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of data based on different parameters, and provides direct links to more detailed data on genes, transcripts or genomic regions. Anduril is open-source; all methods and documentation are freely available.Results: We have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly inhibited cell proliferation. All analysis results are available as a comprehensive website.Conclusions: Our results demonstrate that integrated analysis and visualization of multidimensional and heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results provide several glioblastoma multiforme candidate genes for further studies. Anduril is available at http://csbi.ltdk.helsinki.fi/anduril/ The glioblastoma multiforme analysis results are available at http://csbi.ltdk.helsinki.fi/anduril/tcga-gbm

    Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication

    Get PDF
    Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication. </p
    • …
    corecore