22 research outputs found

    Mitochondrial introgression, color pattern variation, and severe demographic bottlenecks in three species of Malagasy poison frogs, genus Mantella

    Get PDF
    Madagascar is a biodiversity hotspot particularly rich in amphibian diversity and only a few charismatic Malagasy amphibians have been investigated for their population-level differentiation. The Mantella madagascariensis group is composed of two rainforest and three swamp forest species of poison frogs. We first confirm the monophyly of this clade using DNA sequences of three nuclear and four mitochondrial genes, and subsequently investigate the population genetic differentiation and demography of the swamp forest species using one mitochondrial, two nuclear and a set of nine microsatellite markers. Our results confirm the occurrence of two main mitochondrial lineages, one dominated by Mantella aurantiaca (a grouping supported also by our microsatellite-based tree) and the other by Mantella crocea + Mantella milotympanum. These two main lineages probably reflect an older divergence in swamp Mantella. Widespread mitochondrial introgression suggests a fairly common occurrence of inter-lineage gene flow. However, nuclear admixture seems to play only a limited role in this group, and the analyses of the RAG-1 marker points to a predominant incomplete lineage sorting scenario between all five species of the group, which probably diverged relatively recently. Our demographic analyses show a common, severe and recent demographic contraction, inferred to be in temporal coincidence with the massive deforestation events that took place in the past 1000 years. Current data do not allow to conclusively delimit independent evolutionary units in these frogs, and we therefore refrain to suggest any taxonomic changes

    New insights on phylogeography and distribution of painted frogs (Discoglossus) in northern Africa and the Iberian Peninsula

    Get PDF
    Painted frogs (Discoglossus) contain five to six species of Western Palearctic anurans that are mainly distributed in allopatry. We here provide the first comprehensive assessment of the phylogeography of the Moroccan species D. scovazzi and geographically characterize its contact zone with D. pictus in Eastern Morocco. Discoglossus scovazzi shows, in general, a weak phylogeographic structure across Morocco on the basis of mitochondrial DNA sequences of the cytochrome b gene, with only populations centered in the Atlas Mountains characterized by the presence of slightly divergent haplotypes. In eastern Morocco, all populations east of the Moulouya River were clearly assignable to D. pictus. This species was also found along the Mediterranean coast west of the Moulouya, in the cities of Nador and Melilla, suggesting that not the river itself but the wide arid valley extending along much of the river (except close to the estuary) acts as a possible distributional barrier to these frogs. No sympatry of D. scovazzi with D. pictus was observed, and all specimens were concordantly assigned to either species by DNA sequences of cytochrome b and of the nuclear marker RAG1. Species distribution models of the two taxa show largely overlapping areas of suitable habitat, and the two species’ niches are significantly more similar than would be expected given the underlying environmental differences between the regions in which they occur. Comparative data are also presented from the southern Iberian contact zone of D. galganoi galganoi and D. g. jeanneae. These taxa showed less clear-cut distributional borders, extensively shared RAG1 haplotypes, and had instances of sympatric occurrence on the basis of cytochrome b haplotypes, in agreement with the hypothesis of a yet incomplete speciation. In this wide contact zone area we found mitochondrial sequences containing double peaks in electropherograms, suggesting nuclear pseudogenes or (less likely) heteroplasmy, possibly related to the ongoing admixture among the lineagesPeer reviewe

    From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy

    No full text
    Hauswaldt JS, Angelini C, Gehara M, Benavides E, Polok A, Steinfartz S. From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy. Molecular Phylogenetics and Evolution. 2014;70:1-12.The Apennine Peninsula is one of Europe's main glacial refugial areas and harbors a large number of lineages and species. Here, a pattern of higher genetic diversity in the south compared to that of the north is characteristic of most vertebrates; however, most studies that have produced these results have relied only on inferences based on mitochondrial DNA. The spectacled salamanders (genus Salamandrina) are endemic to the Apennine Peninsula and have diverged into two sibling species: S. terdigitata (in the south) and S. perspicillata (in the north), presumably in the late Miocene or early Pliocene. By sequencing one mitochondrial (cytb) and two nuclear genes (RAG1 and POMC) and genotyping 10 microsatellite loci, we traced the evolution of these sibling species from their divergence to their contemporary population structure at a fine scale. Using a multilocus coalescent-based approach, we estimated the temporal divergence of both species at approximately 2.25 mya (million years ago), which, hence, is much younger than previous estimates. The classical pattern of high genetic diversity in the south and lower diversity in the north was confirmed only for some markers, and the demographic histories of the two species differed substantially. Whereas S. perspicillata (north) expanded from a single major refugium in the center of the Apennine Peninsula, populations of S. terdigitata (south) persisted through cooler periods in multiple refugia. Further, the fine-scale population genetic structure of 16 S. perspicillata populations revealed significant genetic differentiation, even across short geographic distances. The results of our study stress that for a better understanding of phylogeographic patterns and past demographic processes, both mitochondria] and multiple nuclear loci should be analyzed to avoid gene-specific, and possibly biased results. (C) 2013 Elsevier Inc. All rights reserved

    First microsatellite loci for spectacled salamanders (Salamandrina perspicillata and S. terdigitata) endemic to the Apennine peninsula

    No full text
    Hauswaldt JS, Polok A, Angelini C, Steinfartz S. First microsatellite loci for spectacled salamanders (Salamandrina perspicillata and S. terdigitata) endemic to the Apennine peninsula. Conservation Genetics Resources. 2012;4(2):399-402.We describe ten microsatellite loci isolated for the oldest lineage of extant salamandrids, the spectacled salamanders (Salamandrina), a genus of terrestrial salamanders endemic to the Apennine peninsula (Italy). Primers were tested in 24 individuals per species, the northern species (Salamandrina perspicillata) and the southern species (Salamandrina terdigitata). All loci were polymorphic in S. perspicillata with number of alleles ranging from three to eleven and observed heterozygosity ranging from 0.25 to 0.83. In S. terdigitata eight loci were polymorphic, the number of alleles ranged from two to nine, and observed heterozygosity from 0.04 to 0.92

    Design and analysis of control systems: case studies

    No full text
    This book provides methods to unify different approaches to tackle stability theory problems. In particular, it presents a methodology to blend approaches obtained from measure theory with methods obtained from Lyapunov’s stability theory. The author summarizes recent works on how different analysis/design methods can be unified and employed for systems that do not belong to either of domains of validity

    A simplified molecular method for distinguishing among species and ploidy levels in European water frogs (Pelophylax)

    Full text link
    Western Palearctic water frogs in the genus Pelophylax are a set of morphologically similar anuran species that form hybridogenetic complexes. Fully reliable identification of species and especially of hybrid ploidy depends on karyological and molecular methods. In central Europe, native water frog populations consist of the Pelophylax esculentus complex, that is, P. lessonae (LL), P. ridibundus (RR) and the hybrid form P. esculentus that can have different karyotypes (RL, LLR and RRL). We developed existing molecular methods further and propose a simple PCR method based on size‐differences in the length of the serum albumin intron‐1 and the RanaCR1, a non‐LTR retrotransposon of the chicken repeat (CR) family. This PCR yields taxon‐specific banding patterns that can easily be screened by standard agarose gel electrophoresis and correctly identify species in all of the 160 samples that had been identified to karyotype with other methods. To distinguish ploidy levels in LR, LLR and RRL specimens, we used the ratio of the peak heights of the larger (ridibundus specific) to the smaller (lessonae specific) bands of fluorescently labelled PCR products resolved on a capillary DNA sequencer and obtained a correct assignment of the karyotype in 93% of cases. Our new method will cut down time and expenses drastically for a reliable identification of water frogs of the P. esculentus complex and potentially for identification of other hybridogenetic complexes and/or taxa, and it even serves as a good indicator of the ploidy status of hybrid individuals

    Membership probabilities for 60 retained PC axes and 12 genetic clusters (sampling localities).

    No full text
    <p>Warmer colors denote more certainty in membership probabilities to each respective cluster. Cluster numbers correspond with populations denoted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0181898#pone.0181898.g006" target="_blank">Fig 6</a>.</p
    corecore